
Open Data Kit 2.0: Expanding and Refining Information

Services for Developing Regions

Waylon Brunette, Mitchell Sundt, Nicola Dell, Rohit Chaudhri, Nathan Breit, Gaetano Borriello
Department of Computer Science and Engineering

University of Washington
Box 35350, Seattle WA, 98195, USA

{wrb, msundt, nixdell, rohitc, nbnate, gaetano}@cse.uw.edu

ABSTRACT

Open Data Kit (ODK) is an open-source, modular toolkit that

enables organizations to build application-specific information

services for use in resource-constrained environments. ODK is

one of the leading data collection solutions available and has been

deployed by a wide variety of organizations in dozens of countries

around the world. This paper discusses how recent feedback from

users and developers led us to redesign the ODK system

architecture. Specifically, the design principles for ODK 2.0 focus

on: 1) favoring runtime languages over compile time languages to

make customizations easier for individuals with limited

programming experience; 2) implementing basic data structures as

single rows within a table of data; 3) storing that data in a

database that is accessible across applications and client devices;

and 4) increasing the diversity of input types by enabling new data

input methods from sensors. We discuss how these principles

have led to the refinement of the existing ODK tools, and the

creation of several new tools that aim to improve the toolkit,

expand its range of applications, and make it more customizable

by users.

Categories and Subject Descriptors

H.4 Information Systems Applications

General Terms

Design

Keywords

Open Data Kit, mobile computing, smartphones, ICTD, sensing,

mobile databases, spreadsheets, data tables, paper forms, vision.

1. INTRODUCTION
Smartphones are rapidly becoming the platform of choice for

deploying data collection and information services in the

developing world. They have quickly leap-frogged desktop and

laptop computers due to their mobility, increased independence

from the power infrastructure, ability to be connected to the

internet via cellular networks, and relatively intuitive user

interfaces enabling well-targeted applications for a variety of

domains. In effect, developing countries are skipping the desktop

and laptop phase of computing development, and are instead

using smartphones and tablets for a range of tasks that have

traditionally been performed on larger machines. In concert with

this development, cloud services are providing many

organizations with the ability to easily rent data storage space and

scale hosting resources as needed, either locally or anywhere in

the world.

We recognized two trends - 1) capable client devices with rich

user interfaces and 2) cloud-based scalable data collection,

computing, and visualization services - several years ago when we

began the Open Data Kit (ODK) project at the University of

Washington. Through ODK, we sought to create an evolvable,

modular toolkit for organizations with limited financial and

technical resources to use to create data collection and

dissemination services. We chose Android as our development

platform because its flexible inter-process communication

methods allowed us to use existing apps for taking pictures,

scanning barcodes, and determining location, rather than having

to rewrite them ourselves, thus speeding development. ODK’s

development was guided by a few simple principles, namely:

 Modularity: create composable components that could be

easily mixed and matched, and used separately, or together;

 Interoperability: encourage the use of standard file formats to

support easy customization and connection to other tools;

 Community: foster the building of an open source community

that would continue to contribute experiences and code to

expand and refine the software;

 Realism: deal with the realities of infrastructure and

connectivity in the developing world and always support

asynchronous operation and multiple modes of data transfer;

 Rich user interfaces: focus on minimizing user training and

supporting rich data types like GPS coordinates and photos;

 Follow technology trends: use consumer devices to take

advantage of multiple suppliers, falling device costs, and a

growing pool of software developers.

The name ODK refers to the entire suite of modular tools. Each

tool in the suite has been assigned a name that describes its

function. Previous work has discussed ODK 1.0 [6], which

consisted of three primary tools: Build, Collect, and Aggregate.

These provide the ability to design forms, collect data on mobile

devices (e.g. phones, tablets), and organize data into a persistent

store where it can be analyzed. Prior papers have also described

the design of several new tools that are being incorporated into

the ODK suite: Sensors [1], Scan [3] and Tables [7]. As we

deployed the original tools, gathered feedback from users, and

sought to incorporate new tools into the ODK suite, it became

clear that there were some deficiencies in our design that needed

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
ACM HotMobile'13, February 26-27, 2013, Jekyll Island, Georgia, USA.

Copyright 2013 ACM 978-1-4503-1421-3 ...$10.00.

to be addressed. This paper describes these deficiencies, and the

rationale that drove a redesign of the inter-tool architecture of the

tool suite, which will be released under the ODK 2.0 label.

ODK has quickly become one of the leading solutions for a wide

variety of organizations, from small NGOs to large government

ministries, and now has thousands of users in dozens of countries

around the world. The projects for which it is being used range

over an ever-increasing set of domains including public health

(our original focus), environmental monitoring, and documenting

human rights abuses. The ODK website has been visited by over

65,000 unique visitors from 202 different countries/territories and

averages over 8500 hits a month. Additionally, over 11,000

distinct users have installed Collect from Google Play (a number

that does not include organizations that install Collect directly

when setting up their deployment). From our users’ collective

experience using ODK, we have seen many ways to improve the

toolkit, expand its range of applications, and make it even more

customizable. Recently, we conducted an extensive survey of the

ODK user and developer community to better understand how

people are using ODK and how organizations’ data collection

needs are evolving. 73 organizations completed our survey,

providing information on 55 different deployments involving at

least 5500 mobile devices in over 30 countries. This vast amount

of feedback, in conjunction with the numerous deployment reports

and feature requests submitted to our mailing list and website, led

us to rethink the ODK system architecture. This paper reports on

the changes that we are now implementing to our system

architecture and applications, and the rationale behind each.

2. LIMITATIONS OF ODK 1.0
Our observations and survey responses can be grouped into four

principal areas of refinement for ODK:

1. support data aggregation, cleansing, and analysis/visualization

functions directly on the mobile device by allowing users to

view and edit collected data;

2. increase the ability to change the presentation of the

applications and data so that the app can be easily specialized

to different situations without requiring recompilation;

3. expand the types of information that can be collected from

sensing devices, while maintaining usability by non-IT

professionals; and

4. incorporate cheaper technologies such as paper and SMS into

the data collection pipeline.

The design of ODK 1.0 focused on collecting data in the form of

surveys, and uploading completed surveys into the database for

analysis and aggregation. It did not provide facilities for getting

that data back out to clients to review and update. However,

feedback shows that many users want to be able to store already

collected data (either from past data collection or from a server

database) on the device and use it to specify which data to display

(e.g., a patient’s past blood pressure readings) or to steer survey

logic (e.g., select follow-up questions based upon a patient’s

medical history). One user told us, [One limitation of ODK 1.0] is

the lack of a local database on the device [that contains]

previously collected information. For example, the last time I

visited your household, there were 5 people living here. Are those

5 people still living here? In addition, one of the largest requests

that we received from users is to make it possible to view and edit

data on the device. For example, one user told us, We need a

presentable way of viewing collected data on the device … like if

you have a roster and need to make decisions based on some

earlier responses, you need to be able to view this data.

Rendering of the surveys in ODK 1.0 was accomplished using a

variant of a W3C XForms standard defined by the OpenRosa

Consortium. Although XForms can specify input constraints (to

provide some immediate error checking abilities), form navigation

logic (branching based on previous answers), and multiple

languages (for local customization), It does not describe the visual

presentation of the prompts and data types. This led to many

specializations of ODK for different organizations, which was

technically challenging for many users. One user told us, We

struggled to understand xml and the XForm. While the XForm is

fairly simple, the xml structure is confusing. Some of the

advanced features require core knowledge of xml coding.

Originally, ODK assumed humans would enter data explicitly or,

at most, gather data from sensors that were built-in to the device

(such as GPS coordinates, barcodes, photos, audio, and video). It

did not support the ability to interact with new sensors or process

data captured from built-in sensors like the camera. However,

gathering information from external sensors is an often-requested

feature; such requests range from enhancing a health survey with

data obtained from medical sensors, to automatically

incorporating GPS and compass data with captured photos. One

user told us, Our [use case] requires us to measure the height of

trees. We currently use a clinometer for this and enter the data

manually. It would be great if we could access the clinometer

[from the device] and use it as part of our data collection

process. Collecting data from sensors attached to the mobile

device is attractive because applications can directly receive and

process the data, obviating the need for manual data transfer by a

human, which may be error-prone.

Finally, many organizations have extremely limited financial

resources and still rely on paper forms or very cheap mobile

phones to gather data, and there is a need to connect these media

to the ODK ecosystem. Simple SMS is a very common form of

communication on mobile devices, particularly in developing

countries, where many people use basic mobile phones that have

only text and voice features. In addition, many organizations are

unable to afford the cost of purchasing and maintaining a mobile

device for every field worker. Such organizations would prefer to

use cheap and well-understood paper forms to collect data at the

lowest level of the information hierarchy, and then digitize the

data at a higher level to enable data transmission, statistical

analysis, and aggregation. The limitations of the original ODK 1.0

tools are addressed by the design of ODK 2.0, a refined and

expanded toolkit with a more flexible system architecture.

3. DESIGN OF ODK 2.0
The refinement and expansion of ODK is based on four core

design principles that we are incorporating into all the tools (these

stem directly from the four areas of refinement described at the

beginning of Section 2 but do not correspond 1-to-1):

1. when possible, UI elements should be designed using a more

widely understood runtime language instead of a compile time

language, thereby making it easier for individuals with limited

programming experience to make customizations;

2. the basic data structures should be easily expressible in a single

row, and nested structures should be avoided when data is in

display, transmission, or storage states;

3. data should be stored in a database that can be shared across

devices and can be easily extractable to a variety of common

data formats; and

4. new sensors, data input methods and data types should be easy

to incorporate into the data collection pipeline by individuals

with limited technical experience.

Our evolved system architecture is still governed by the over-

arching concern that for computing tools to address the many

information gaps in developing regions, information services must

be composable by non-programmers and be deployable by

resource-constrained organizations (in terms of both financial and

technical resource constraints) using primarily consumer services

and devices. To facilitate this, the new ODK 2.0 toolkit

(individual tool names are italicized) provides a way to

synchronize, store and manipulate data in Tables on a mobile

device with a user interface that supports both the smaller

smartphone screen and larger tablet form-factors, and allows

viewing and manipulating data in a simple row format. In

addition, the new design makes customization easier by using

widely understood standard presentation languages, such as

HTML and JavaScript, to facilitate a more easily tailored user

experience on a per Survey basis. Furthermore, ODK 2.0 makes is

possible to attach external Sensors to mobile devices over both

wired and wireless communication channels, thereby reducing the

amount of manual data transcription from sensors into survey

forms, and also facilitates the automatic conversion of information

recorded on paper forms to a digital format by using the camera of

the mobile device to Scan documents. See Figure 1 for a block

diagram of the ODK tool suite architecture.

Figure 1: The new ODK 2.0 system architecture, showing

cloud services (left) and mobile client services (right). In the

cloud, Aggregate provides services to synchronize data across

devices and export data in common file formats. On the device,

a common database/file system is shared between the tools and

across clients. Scan, Survey, and Tables (above the database)

are tools for gathering, processing and visualizing input data;

Submit and Sensors (below the database) are tools that

augment Android to create additional services.

3.1 Data Management on Mobile Device
Many applications rely on previously collected data; for example,

logistics management, public health, and environment monitoring

often require workers to return and reference previously collected

data to verify and possibly update conditions. In the previous

ODK design, revising data from previously completed surveys

was not supported. However, more and more of our users want to

be able to use all or part of previous surveys to complete new ones

(e.g., not re-entering patient demographics for a follow-up visit

when that data was already collected in the original registration

form). To enable data updating, aggregation, curation, cleansing

and analysis functions on the mobile platform we created Tables.

Tables allows a user to create new tables, add data, delete data,

search data, scroll through data, add columns, configure data

types, view graphs, apply conditional formatting, perform

summary calculations, and synchronize the data with the cloud.

Tables presents a user interface for editing and viewing data that

is optimized for the smaller screens of mobile devices [7], and

provides customization capabilities for users to easily configure

the app for their use case. Tables has a number of built-in views,

and allows users to explore their tabular data with customizable

views defined by HTML/JavaScript files, thus making

presentation much more flexible while avoiding recompilation.

These views can pull data from, and link to, other tables, so that

users can form an integrated app, rather than a set of loosely

connected (or completely disconnected) tables. For example, a

table of facilities can link to a table of specifics about individual

resources at each facility. Alternatively, Tables can use Survey’s

strong data typing to add and edit entire rows and incorporate

input constraint checking, or use Scan’s image processing

capabilities to add rows based upon filled-in paper forms. These

tools (Tables, Survey, and Scan) use an inter-tool architecture

based on a common SQLite database schema.

Another important refinement to Survey is making data collection

and presentation more easily customizable. In Collect, changing

the look-and-feel of a particular question type or extending the

expression language (e.g., adding a count function) to express the

user’s business logic (e.g., visibility and value constraints)

required changes to Java source code. This high barrier to change

meant that we spent a significant amount of time refining our user

interface because it needed to be generic enough to work for many

use cases. It also created friction to the adoption of the technology

because organizations lacked the skills or funding necessary to

customize the tool. In contrast, Survey allows organizations to

easily express their business logic and heavily customize the user

interface for their specific use case through the use of JavaScript

and HTML. We anticipate that Survey’s JavaScript form

interpreter, the use of open source toolkits (e.g., JQueryMobile,

Handlebars, Backbone), and the greater worldwide prevalence of

JavaScript and HTML coding skills will make it easier for

individuals and organizations to make domain-specific

customizations. Our design leverages the suite of standard ODK

question widgets that encapsulate the rendering, event handling

and business logic. These question widgets are then extended at

runtime to incorporate rendering and business logic

customizations (e.g., visibility and value constraints). Users can

easily customize the user interface by specifying an alternative

Handlebars template in the form definition, causing the widget to

render using the alternative template.

User experiences from ODK 1.0 deployments show that although

non-technical users are able to make small customizations to

existing XForms, creating an entire XForm from scratch is often

too challenging. Thus, to shield users from the complexity of

writing XForms, we created Build, a tool that allows users to

graphically compose surveys, and XLSForm (based on ‘pyxforms’

[14]) that gives users the option of writing their survey in an

Excel spreadsheet that is automatically converted to an XForm. In

ODK 2.0, we are building a revised converter to transform a

spreadsheet to a JSON description that can be rendered using

ODK’s new interpreter that leverages web technologies. By

allowing users to specify information in a spreadsheet, it enables

non-technical users to remain shielded from the complexity of

writing JSON and JavaScript. Users with minimal Javascript and

HTML skills will be able to copy and modify standard template

files (e.g., use different HTML constructs or add CSS style

classes) and reference these modified template files to customize

the rendering of individual questions in the form or create new

question types. In the same way, users can also revise the standard

templates and CSS stylesheets to create an organization-specific

look and feel. Users with more advanced Javascript and HTML

skills can customize a question widget’s event handling (e.g., add

mouseover-like treatments) or define entirely new widgets.

3.2 Improved Input Methods
ODK 2.0 reduces the amount of manual data transcription from

sensors into surveys by making it possible to attach external

sensors to mobile devices. By hiding complexities such as the

management of communication channels and sensor state as well

as data buffering and threading, the Sensors framework [1]

simplifies the code needed to access a sensor.

Sensors provides a common interface to access both built-in and

external sensors connected over a variety of communication

channels. Thus far, we have implemented channel managers for

Bluetooth and USB, and plan to implement managers for WiFi

and NFC in the near future. The USB Manager currently supports

three USB protocols: Android’s Accessory Development Kit

(ADK) 2011, ADK 2012, and a USB Host serial channel. Sensors

also provides a convenient built-in sensor discovery mechanism

that allows users to discover sensors and associate the appropriate

driver with a sensor. Users who want to integrate external sensors

with their mobile devices download and install the Sensors app

and sensor driver app from an app store such as Google Play. This

facilitates the easy delivery of the application and driver updates

to devices. Figure 2 (left) shows Sensors being used in a South

African clinic to deactivate harmful contaminants (like the HIV

virus) in breast milk. Sensors provides abstractions that delineate

application code from code that implements drivers for sensor-

specific data processing. The sensor driver abstraction allows

device drivers to be implemented in user-space so that locked

devices can be customized by end users. The framework handles

the data buffers and connection state for each sensor, which

simplifies the drivers. Separating application code from driver

code also allows the code bases to evolve independently.

In addition to accepting and processing input from a variety of

different sensors, the continued use of paper forms for data

collection in resource-constrained environments made it important

that we also facilitate efficient data entry from paper forms. Many

of the paper forms used by organizations for data collection

contain a mixture of data types, including handwritten text,

numbers, checkboxes and multiple choice answers. While some of

these data types, such as handwritten text, require a person to

manually transcribe the data, others, like checkboxes or bubbles,

can be analyzed and interpreted automatically. To take advantage

of machine-readability, we designed ODK Scan [3], a piece of

software that uses a lightweight JSON form description language

to facilitate the processing of existing paper forms without the

need to redesign or add coded marks to the forms. To add a form

to the system, the user creates a JSON form description file that

specifies the size, location and data type of each form field to be

processed. The camera on the device is used to photograph the

form, and computer vision algorithms use the JSON form

description file to automatically segment and interpret the

machine-readable data. The image processing components of the

application are implemented using OpenCV, an open source

computer vision library, while the user interface components are

implemented using Android's Java framework. We use the Java

Native Interface (JNI) to facilitate communication between the

Java framework and OpenCV’s native image processing

algorithms. All of the image processing is performed on the

device so as not to require an Internet or cellular connection. After

the image processing is completed, Scan launches Collect so that

users can manually complete the entry of data types that are not

machine-readable. Scan makes this data entry process faster by

exporting small image snippets of each form field to Collect, and

the image snippets are displayed on the screen of the device

alongside the corresponding data entry box, so that users can

simply look at the image snippet and type in the value displayed.

Figure 2 (center) shows an image of Scan being used to collect

vaccine statistics in a rural health center in Mozambique.

Figure 2: Examples of ODK tools in action. Left: Using

Sensors to monitor breast milk pasteurization that deactivates

contaminants (e.g. HIV virus); Center: Using Scan to digitize

paper based vaccine information in Mozambique; Right:

Indigenous tribal member using Collect in the Amazon jungle.

Data can also be collected from and disseminated to users with

cheap SMS-only phones. By acting as an SMS server, Tables

enables anyone to send SMS messages to query an existing table

or add rows to a table. We use the data table abstraction to

implement basic access control measures based on the phone

number from which the message was sent as well as locally-

administered (on the receiving smartphone) usernames and

passwords. For example, this allows a farmer with a cheap phone

to post available produce to an agent at a remote market or to

obtain the commodity prices in that market. This allows Tables to

provide services that can be accessed from the cheapest and most

common phones without introducing the complexity of an SMS

gateway or other cloud-based server.

3.3 Data Management in the Cloud
Less technically capable users encounter significant barriers to

leveraging the power of the cloud. To simplify the distribution of

forms to mobile devices, the retrieval of data from devices, and

storing and managing data, we designed Aggregate, an auto-

configuring, ready-to-deploy server. Aggregate manages collected

data, provides interfaces to export the aggregated data into

standard formats (e.g. CSV, KML, JSON) and allows users to

publish data to online services (e.g., Google Spreadsheet or

Fusion Tables). Aggregate is a configurable generic data storage

service that runs on a user’s choice of computing platform (cloud-

based or private server). Aggregate can be deployed to the Google

AppEngine hosting service to enable a highly-available and

scalable service that can be maintained by unskilled users and

less-capable IT organizations. However, many of our users have

data locality and security concerns, either because the data cannot

legally leave the country of origin, or because the data may

contain sensitive identifiable information, or be high-risk or high-

value data. For these users, AppEngine may not be appropriate.

Aggregate can therefore also run within a Java web container

(e.g., Tomcat) using a MySQL or PostgreSQL datastore.

Communications security generally relies on HTTPS connections

between client devices and the server. However, because many

organizations do not have the funds to purchase or the expertise to

install SSL certificates on their own servers, we provide user

authentication and data security over HTTP communications

through DigestAuth and the asymmetric public key encryption of

form data before transmission to the cloud. If asymmetric public

key encryption is used, the form data is stored in encrypted form

on the server, which enables some organizations to continue to

leverage the AppEngine cloud hosting service despite stronger

data security requirements. In this case, users download the

encrypted data to a computer and use a locally-running tool called

ODK Briefcase to decrypt it using a private key.

To provide datastore independence, and because Aggregate parses

the submitted XForm instance into column values (to better

support filtering and visualization) and incorporates a dynamic

datastore abstraction layer rather than a layer set at compile-time.

Since XForms can define arbitrarily deep nested groupings of

repeated questions, Aggregate performs a complex mapping of the

XForm to a set of database columns and tables. This greatly

complicates the presentation of the data, and the wide variety of

different use cases created by users prevents a generic processing

of these nested repeating sections when visualizing, publishing or

exporting the data. Since Aggregate parses the submitted XForm

instance into column values, a more capable data analysis package

could be configured to operate directly on the underlying database

tables. However, the complexity of this configuration makes it

impractical for many of our users.

In ODK 1.0, the communications flow is unidirectional; blank

forms flow from the cloud service (Aggregate) to mobile devices,

and data from the filled-in forms flows back to the cloud service

and then out to remote services or into file exports. Collected data

can be deleted, but is otherwise immutable and provides a store of

record. Data is stored (aggregated) in the cloud, where simple

curation and data visualization tools are provided. Aggregate

bridges the gap between mobile data collection tools and the

sophisticated data analysis software able to derive complex results

by providing many forms of data export.

In version 2.0, a simple row is the basic storage element;

repeating groups are explicitly represented as linked rows across

two different forms. The new design eliminates the complex

backend mapping that made it difficult for organizations to access

the database structures directly. The communications flow has

changed so it is now a cloud-mediated peer-to-peer store-and-

forward network. Any authorized device running Tables can

create new surveys and share data with any of its peers and the

remote services can publish surveys and data back out to the

mobile devices. Retaining a cloud service (Aggregate) as both a

datastore and a store-and-forward communications nexus enables

robust peer-to-peer operations in intermittent and low-

connectivity environments. The cloud also provides a central

point from which to manage and disseminate a security model that

can be applied and enforced independently on each device.

Since data is no longer immutable, Tables relies upon the user to

resolve conflicts that occur whenever two users concurrently

update the same row in a table. Conflicts are detected and

resolved at the individual row level (in keeping with our row-

based information model) between a row on the user's mobile

device and a row on the server. This maximizes the system’s

ability to disseminate new and uncorrelated change across

devices. Manual, client-side conflict resolution was chosen

because: 1) established recent-modification conflict resolution

techniques are inappropriate or difficult to apply across devices

that may not be time synchronized and which may be in

disconnected operation for extended periods of time; 2) since

ODK targets a diverse set of use cases and application domains,

any assumptions built into an automatic resolution mechanism

will likely be inappropriate for some domains; 3) accurately

expressing the procedural rules to be applied during automatic

conflict resolution is likely difficult for non-programmers and

capturing and applying these domain-specific rules would

increase the complexity of the server design; 4) client-side

resolution benefits by keeping the user involved with reconciling

conflicts since many times they understand the semantics of the

conflict and can better resolve it at the moment it is detected

rather than by a more remote administrator at a later date.

Data submission is currently initiated by the user because

connectivity is often intermittent and organizations want to

control data transfer costs. To better use available connectivity

that may be sporadic, and to improve data timeliness (both on the

mobile device and when publishing data to the peers), we are

designing a tool called Submit that will manage data transmission.

Submit enables organizations to specify parameters such as data

priority, data importance, deadlines, and the cost of the transport

mediums. Submit then factors in the device’s connectivity history,

and intelligently uses the connectivity available (e.g., SMS,

GPRS/3G, Wi-Fi) to create a priority routing system that

improves data timeliness in the intermittent and expensive

connectivity of the developing world. Connectivity history is an

important factor in routing decisions, since there may be certain

times of day when the device is within range of a Wi-Fi base

station. Alternatively, depending on the data priority and the costs

of other connectivity options, it may make sense for the data to be

stored locally until the user returns to Wi-Fi connectivity.

3.4 Use Case: Cold Chain Management
ODK 2.0 is an expanded and refined set of modular tools for

collecting and managing data in low-resource environments. This

section describes one concrete use case in which ODK 2.0 could

be used to improve the delivery of health and information

services. The cold chain is a complex sequence of refrigeration

equipment used to ensure that vaccines retain the correct

temperature during transport and storage. Collecting and

disseminating accurate and timely data regarding a country’s cold

chain improves resource-allocation and planning, but cold chain

inventories are currently mostly paper-based systems that contain

large amounts of inaccurate or out-of-date information. Replacing

the paper-based system with ODK 2.0 could improve the speed

and reliability of the inventory update process. For example,

remote field workers could use Tables to automatically download

the most up-to-date subset of cold chain data for a site from

Aggregate, and use Survey to enter any new refrigerator

information. Sensors could be used to continuously monitor the

temperatures of refrigerators at the site, and the worker could use

Tables to visualize this data and check for anomalies. Finally, the

worker could use Scan to digitize paper-based records that track

the number of vaccines administered at this site to improve stock

monitoring and resupply. All of these tasks could be performed

quickly on-site and the data made immediately available to

decision-makers and stakeholders.

4. RELATED WORK
A variety of other solutions attempt to replace paper-based data

collection with digital tools. CAM [11] used its own scripting

language to augment paper forms by using bar codes to trigger

audio prompts for manual data entry. MyExperience [5] collects

survey responses triggered by sensor events but does not address

the larger issues of organizational information flow. Commcare

[4] is the most related to Collect in that it targets use by health

workers and also uses XForms, but it is less flexible in how it can

be composed with other tools and requires recompilation to

customize presentation. Manipulating small databases on phones

has received less attention. Tools like Excel are available in

smartphone versions but have not been adapted to small screens

and do not work directly from a database rather than a file. Uju

[13] enables the creation of small databases that can be populated

or queried over SMS but does not integrate with tools that obtain

data from sensors or paper forms. Extracting data from paper

forms via crowdsourcing is being commercialized by Captricity

[2], while LocalGround [12] processes manually annotated paper

maps and adds the data to existing digital maps. Neither of these

tools work in completely disconnected operation. Recent activity

focuses on connecting external sensors to phones using audio

jacks (Hijack [9]) and Bluetooth (Amarino [8]). Google released

a sensor development kit for Android [15], and researchers have

focused on low-power operation of external sensors (Reflex [10]).

However, what distinguishes ODK 2.0 from other solutions is the

interoperability of these elements, and the ability to do all the

computation, analysis and visualization on the device.

5. FUTURE WORK & CONCLUSION
The original design of ODK assumed that a system administrator

would have access to a computer to initially set up and administer

the system, including designing forms and setting up data storage

facilities. However, in many rural locations, computers are rarely

available, which limits the adoption of ODK in these settings. To

reach these areas, it is desirable to create a system that could be

entirely set up and administered on a mobile device. While ODK

2.0 provides users with some methods for building information

systems on mobile devices (e.g., database design with Tables,

customized question widgets) it does not entirely remove reliance

on computers as users are not able to configure their cloud service

or write a device driver. Additional work is necessary to build a

system that can be set up and managed entirely on a mobile

device. The new ODK 2.0 design focuses on a core set of tools

that enable users to move beyond treating mobile devices as

simple input devices, and instead leverage mobile computing

platforms to build more dynamic collaborative information

systems in the field. We expect that the changes in design and the

new capabilities of the software will lead to a rich new set of

research challenges and opportunities that we plan to explore.

Open Data Kit provides organizations with a modular toolkit to

build application-specific information services for use in resource-

constrained environments. Our own experiences combined with

extensive feedback from organizations using the toolkit have led

to a redesign of ODK that aims to better meet the needs of a wider

range of organizations. Specifically, our design changes include

1) favoring runtime languages over compile time languages to

make customizations easier for individuals with limited

programming experience; 2) implementing basic data structures as

single rows, 3) storing data in a database that is accessible across

apps and client devices; and 4) increasing the diversity of input

types by enabling new data input methods from sensors. We

discussed how the new system design led to the addition of

several tools to ODK 2.0 and how the new system architecture

enables its adaptation to an even larger and varied set of

applications. The ODK tools and their source code are freely

available for download at http://opendatakit.org and are

distributed under an Apache2 license.

6. ACKNOWLEDGMENTS
We gratefully acknowledge the support of Google Research, NSF

Grant No. IIS-1111433, and an NSF Graduate Research

Fellowship under Grant No. DGE-0718124. We are grateful for

all our collaborators at PATH Seattle and the ODK community.

7. REFERENCES
[1] W. Brunette, R. Sodt, R. Chaudhri, M. Goel, M. Falcone, J. Van Orden, G.

Borriello, “Open Data Kit Sensors: a Sensor Integration Framework for Android

at the Application-level,” Proc. 10th Intl. Conf. on Mobile Systems, Applications,

& Services (Mobisys), 2012.

[2] K. Chen, A. Kannan, Y. Yano, J. M. Hellerstein, and T. S. Parikh, Shreddr:

pipelined paper digitization for low-resource organizations, Proc. 2nd ACM Symp

on Computing for Development (DEV), 2012.

[3] N. Dell, N. Breit, T. Chaluco, J. Crawford, and G. Borriello, “Digitizing Paper

Forms with Mobile Imaging Technologies,”

Proc. 2nd ACM Symp on Computing for Development (DEV), 2012.

[4] B. DeRenzi, G. Borriello, J. Jackson, V. S. Kumar, T. S. Parikh, P. Virk, and N.

Lesh, “Mobile Phone Tools for Field-Based Health Care Workers in Low-

Income Countries,” Mount Sinai Journal of Medicine, vol 78, no 3, 2011.

[5] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay,

“MyExperience: a system for in situ tracing and capturing of user feedback on

mobile phones,” Proc. 5th Intl .Conf. on Mobile Systems, Applications and

Services (Mobisys), 2007.

[6] C. Hartung, A. Lerer, Y. Anokwa, C. Tseng, W. Brunette, and G. Borriello,

“Open Data Kit: tools to build information services for developing regions,”

Proc. 4th ACM/IEEE Intl. Conf. on Information and Communication

Technologies and Development (ICTD), 2010.

[7] Y. Hong, H. K. Worden, and G. Borriello, “ODK Tables: data organization and

information services on a smartphone,” Proc. 5th ACM Workshop on Networked

Systems for Developing Regions, 2011.

[8] B. Kaufmann and L. Buechley, “Amarino: a Toolkit for the Rapid Prototyping of

Mobile Ubiquitous Computing,” Proc. 12th Intl. Conf. on Human Computer

Interaction with Mobile Devices and Services, 2010.

[9] Y.S. Kuo, S. Verma, T. Schmid, and P. Dutta, “Hijacking Power and Bandwidth

from the Mobile Phone’s Audio Interface,” Proc. 1st ACM Symp on Computing

for Development (DEV), 2010.

[10] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong, “Reflex: Using Low-power

Processors in Smartphones without Knowing Them,” Proc. 17th Intl .Conf. on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2012.

[11] T. S. Parikh and E. D. Lazowska, “Designing an Architecture for Delivering

Mobile Information Services to the Rural Developing World,” Proc. 15th Intl

Conf on World Wide Web (WWW), 2006.

[12] S. Van Wart, K. J. Tsai, and T. Parikh, “LocalGround: a Paper-based Toolkit for

Documenting Local Geo-spatial Knowledge,” Proc. 1st ACM Symposium on

Computing for Development (DEV), 2010.

[13] L. Wei-Chih, M. Tierney, J. Chen, F. Kazi, A. Hubard, J. G. Pasquel, L.

Subramanian, and B. Rao, “UjU: SMS-based applications made easy,” Proc 1st

ACM Symp. on Computing for Development (DEV), 2010.

[14] formhub. http://formhub.org/. [Accessed: 11-Oct-2012].

[15] Android Accessory Development Kit. http://developer.android.

com/tools/adk/index.html. [Accessed: 11-Oct-2012].

http://opendatakit.org/

