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           Experimental Research in HCI 

    The experimental method is a technique used to collect data and build scientifi c 
knowledge, and it is one of the primary methodologies for a wide range of disci-
plines from biology to chemistry to physics to zoology, and of course human–
computer interaction (HCI). 

 In this chapter, we learn about the basics of experimental research. We gain an 
understanding of critical concepts and learn to appreciate the ways in which experi-
ments are uniquely suited to answer questions of causality. We also learn about best 
practices and what it takes to design, execute, and assess good experimental research 
for HCI.  

    A Short Description of Experimental Research 

 At its heart, experimental research aims to show how the manipulation of one vari-
able of interest has a direct causal infl uence on another variable of interest (Cook & 
Campbell,  1979 ). Consider the research question, “How does the frame rate of a 
video affect human perception of fl uid movement?” 

 Breaking this down, we can examine several of the elements necessary for good 
experimental research. The fi rst has to do with the notion of  causality . Our example 
question implicitly posits that a change in one variable, in this case frame rate, 
causes variation in another variable, the perception of fl uid movement. More 
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 generally, we often think of two variables,  X  and  Y ; and establishing the notion of 
causality, which implies that changes in  X  lead to changes in  Y . 

 The second thing to note is the idea of  variables . The researcher needs to 
 manipulate the levels or degree of one or more variables, known as the  independent 
variables , while keeping constant other extraneous factors. In this example, our 
independent variable is frame rate, and we could show the same video at different 
frame rates, while controlling for other factors such as brightness, screen size, etc. 
It is also important that we are able to measure the effect that these manipulations 
have on one or more  dependent variables . In this case, our dependent variable may 
be a rating score that captures human perception of fl uid movement. 

 The third thing to note is that our initial question could be formally stated as a 
 hypothesis  regarding the predicted relationship between frame rate and perception 
of fl uid movement. For example, “An increase in frame rate will increase human 
perception of fl uid movement.” The formulation of a hypothesis is important in that 
it clearly states the parameters of the experiment and communicates the expected 
relationship. The observed data are then subjected to statistical analysis to provide 
evidence for or against the hypothesized relationship. 

 Finally, true experiments require  random assignment  of participants to experi-
mental conditions. Random assignment is critical in establishing equivalent partici-
pant groups (with some probability) on both measured and unmeasured 
characteristics at the outset of the study. This safeguards against systematic biases 
in assignment of the participants to the experimental conditions, and increases the 
likelihood that differences across the groups result solely from the treatment to 
which they are assigned. Without random assignment there exists a risk that attri-
butes of the participants drive the changes in the dependent variable. 

 Returning to our frame rate example, imagine running a study in which one 
group of participants watches a video at a low frame rate and a second group watches 
the same video at a much higher frame rate. You cleverly devise a way to measure 
perception of fl uid movement, recruit participants to come to the lab, and assign the 
fi rst ten arrivals to the high frame rate condition and the next ten arrivals to the low 
frame rate condition. After collecting and analyzing your data you fi nd—counter to 
your hypothesis—that the individuals in the high frame rate condition rated the 
video as less fl uid. Upon further refl ection you realize that the participants that 
showed up fi rst did so because they have a personality type that makes them the kind 
of person to arrive early. It just so happens that this personality trait is also associ-
ated with greater attention to detail and as a result they rate things more critically 
than the late arrivals. When you do not make use of random assignment, you 
increase the risk of such confounds occurring.  

    History, Intellectual Tradition, Evolution 

 To gain a deeper sensitivity to the role experimental research plays in HCI today, it 
is helpful to trace its roots, which go back to the development and formalization of 
the scientifi c method. Aristotle is often credited in developing initial ideas toward 
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the search for “universal truths,” and the scientifi c method was popularized and 
experienced a major emergence with the work of Galileo and others in what is 
known as the Scientifi c Revolution of the sixteenth through eighteenth centuries. In 
a nutshell, scientifi c inquiry aims to understand basic relations that exist between 
circumstances and behaviors, with the ultimate goal of aggregating this understand-
ing into a formal body of knowledge. 

 While experimental research was originally developed as a paradigm for the 
physical sciences to establish scientifi c principles and laws, starting in the late nine-
teenth and early twentieth centuries, psychologists such as Wilhelm Wundt and 
G. Stanley Hall developed experimental laboratories to investigate human thought 
and behavior. It quickly became apparent that humans posed a particular challenge 
for measurement. If humans behaved in a systematic and consistent fashion like the 
physical world, the application of the scientifi c method to questions of human behav-
ior would be straightforward. But they do not; individuals vary in their behavior from 
one moment to the next, and across individuals there can be enormous variability. 

 As a result of this, researchers in psychology, sociology, cognitive science and 
information science, as well as the social sciences more broadly, developed new 
research techniques that were more appropriate for dealing with the vagaries of 
human behavior in a wide variety of contexts. Most of this early research stayed 
close to the ideals of the traditional sciences by applying the techniques to support 
systematic knowledge production and theoretical development regarding human 
behavior. 

 As the fi eld of HCI evolved, it became clear that experimental research was use-
ful not only for generating hypothesis-driven knowledge and theoretical advance-
ment but also for informing practical and applied goals. In a recent piece entitled, 
“Some Whys and Hows of Experiments in Human–Computer Interaction,” Hornbæk 
( 2011 , pp. 303–305) further argues that experimental research is suitable for inves-
tigating process details in interaction as well as infrequent but important events by 
virtue of the ability to recreate them in a controlled setting. He also highlights the 
benefi ts of sidestepping problems with self-reports that stem from faulty human 
judgments and refl ections regarding what lies behind our behaviors and feelings 
during interaction. 

 Using an approach known as A/B testing, controlled online experiments are used 
at large Internet companies such as Google, Microsoft, or Facebook to generate 
design insights and stimulate innovation (Kohavi, Henne, & Sommerfi eld,  2007 ; 
Kohavi & Longbotham,  2007 ; Kohavi, Longbotham, & Walker,  2010 ). Accordingly, 
some HCI research is more theoretically driven (e.g., Accot & Zhai,  1997 ; Gergle, 
Kraut, & Fussell,  2013 ; Hancock, Landrigan, & Silver,  2007 ; Wobbrock, Cutrell, 
Harada, & MacKenzie,  2008 ), while other research is more engineering-driven with 
the goal to demonstrate the utility of a technology from a more applied perspective 
(e.g., Gutwin & Penner,  2002 ; Harrison, Tan, & Morris,  2010 ; MacKenzie & Zhang, 
 1999 ; Nguyen & Canny,  2005 ). 

 Experimental techniques are also widely used in usability testing to help reveal 
fl aws in existing designs or user interfaces. Whether evaluating if one user interface 
design is better than another; showing how a new recommender system algorithm 
infl uences social interaction; or assessing the quality, utility, or excitement 
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engendered by a new device when we put it to use in the world, good experimental 
research practices can be applied to make HCI more rigorous, informative and inno-
vative. In fact, many of the benefi ts of experimental research and its techniques can 
be seen in HCI studies ranging from tightly controlled laboratory experiments (e.g., 
MacKenzie & Zhang,  1999 ; Veinott, Olson, Olson, & Fu,  1999 ) to “in the wild” 
fi eld experiments (e.g., Carter, Mankoff, Klemmer, & Matthews,  2008 ; Cosley, 
Lam, Albert, Konstan, & Riedl,  2003 ; Evans & Wobbrock,  2012 ; Koedinger, 
Anderson, Hadley, & Mark,  1997 ; Oulasvirta,  2009 ).  

    Advantages of Experimental Research 

 As a methodology, experimentation has a number of advantages over other HCI 
research methods. One of the most commonly recognized advantages hinges on its 
 internal validity , 1  or the extent to which the experimental approach allows the 
researcher to minimize biases or systematic error and demonstrate a strong causal 
connection. When done properly it is one of the few methodologies by which cause 
and effect can be convincingly established. 

 In Rosenthal and Rosnow’s terms, experimental research focuses on the identifi -
cation of causal relationships of the form “ X  is responsible for  Y .” This can be con-
trasted with two other broad classes of methodologies: descriptive studies that aim 
to capture an accurate representation of what is happening and relational studies 
that intend to capture the relationship between two variables but not necessarily a 
causal direction (see Rosenthal & Rosnow,  2008 , pp. 21–32). 

 The experimental method uses precise control of the levels of the independent 
variable along with random assignment to isolate the effect of the independent vari-
able upon a dependent variable. It also permits the experimenter to build up models 
of interactions among variables to better understand the differential infl uence of a 
variable across a range of others. 

 It also makes use of quantitative data that can be analyzed using inferential sta-
tistics. This allows for statistical and probabilistic statements about the likelihood of 
seeing the results, and discussion about the size of the effect in a way that is 
 meaningful when comparing to other hypothesized sources of infl uence. 

 Experimental research also provides a systematic process to test theoretical 
propositions and advance theory. A related advantage is that experiments can be 
replicated and extended by other researchers. Over time, this increases our confi -
dence in the fi ndings and permits the generalization of results across studies, 
domains, and to wider populations than initially studied. This supports the 
development of more universal principles and theories that have been examined by 
a number of independent researchers in a variety of settings.  

1   Much of what makes for good experimental design centers on minimizing what are known as 
threats to internal validity. Throughout this chapter we address many of these including construct 
validity, confounds, experimenter biases, selection and dropout biases, and statistical threats. 
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    Limitations of Experimental Research 

 In general, experimental research requires well-defi ned, testable hypotheses, and a 
small set of well-controlled variables. However, this may be diffi cult to achieve if 
the outcomes depend on a large number of infl uential factors or if carefully control-
ling those factors is impractical. If an important variable is not controlled for, there 
is a chance that any relationship found could be misattributed. 

 While an advantage of experimental research is internal validity, the fl ipside is 
that these benefi ts may come at the risk of low  external validity . External validity is 
the degree to which the claims of a study hold true for other contexts or settings such 
as other cultures, different technological confi gurations, or varying times of the day. 
A side effect of controlling for external factors is that it can sometimes lead to 
overly artifi cial laboratory settings. This increases the risk of observing behavior 
that is not representative of more ecologically valid settings. 

 That said, when designing a study there are ways to bolster external validity. 
Olson and colleagues’ paper on group design processes (Olson, Olson, Storrøsten, & 
Carter,  1993 ) exemplifi es three ways to increase external validity when designing an 
experiment. First, they chose a task that was a good match for the kinds of activities 
they had observed in the fi eld—designing an automatic post offi ce—and they tested 
the task with real software developers to ensure it was an accurate portrayal of 
everyday work activities. Second, they chose participants for the study that were as 
close as possible to those they studied in the fi eld. In this case they chose MBA 
students with at least 5 years of industry experience and who had already worked 
together on group projects. Third, they assessed the similarity of the behaviors 
between the laboratory study and their fi eldwork on several key measures such 
as time spent on specifi c aspects of design and characteristics of the discussions 
(see Olson et al.,  1993 , pp. 333–335 and Fig. 4). 

 Another common challenge for HCI researchers is that they often want to show 
that their system is “just as good” as another system on some measures while having 
advantages in other areas. A common mistake is to treat a lack of signifi cance as 
proof that no difference exists. To effectively establish that things are “just as good” 
a form of equivalence testing is needed; effect sizes, confi dence intervals, and 
power analysis 2  techniques can be used to show that the effect either does not exist 
or is so small that it is negligible in any practical sense (for details see Rogers, 
Howard, & Vessey,  1993 ). 

 Furthermore, it should be recognized that hypotheses are never really “proven” 
in an absolute sense. Instead, we accrue evidence in support of or against a given 
hypothesis, and over time and repeated investigation support for a position is 
strengthened. This is critical and points to the importance of replication in experi-
mental work. However, replication is often less valued (and thus harder to publish) 
in HCI than the novelty of invention. We argue, along with several colleagues, that 

2   G*Power 3 is a specialized software tool for power analysis that has a wide number of features 
and is free for noncommercial use. It is available at  http://www.gpower.hhu.de 
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as the fi eld matures, replication and extension should become more valued out-
comes of HCI research (Wilson, Mackay, Chi, Bernstein, & Nichols,  2012 ). 

 Finally, because experimental research is often taught early in educational pro-
grams and hence is a familiar tool, it is sometimes force-fi t into situations where 
research questions might have been more appropriately addressed using less formal 
instantiations of the experimental method or by using other methodologies (for a 
critique and response, see Lieberman,  2003 ; Zhai,  2003 ). A poorly executed experi-
ment may have the veneer of “scientifi c validity” because of the methodological 
rigor, but ultimately provides little more than well-measured noise.  

    How to Do It 

 In HCI, we often want to compare one design or process to another, decide on the 
importance of a possible problem or solution, or evaluate a particular technology or 
social intervention. Each of these challenges can be answered using experimental 
research. But how do you design an experiment that provides robust fi ndings? 

    Hypothesis Formulation 

 Experimental research begins with the development of a statement regarding the 
predicted relationship between two variables. This is known as a research hypothe-
sis. In general, hypotheses clarify and clearly articulate what it is the researcher is 
aiming to understand. A hypothesis both  defi nes the variables involved  and  the rela-
tionship between them , and can take many forms: A causes B; A is larger, faster, or 
more enjoyable than B; etc. 

 A good hypothesis has several characteristics. First, the hypothesis should be 
 precise . It should clearly state the conditions in the experiment or state the compari-
son with a control condition. It should also describe the predicted relationship in 
terms of the measurements used. 

 Second, the hypothesis should be  meaningful . One way it can be meaningful is 
by leading to the development of new knowledge, and in doing so it should relate to 
existing theories or point toward new theories. Hypotheses in the service of applied 
contributions can also be meaningful as they reveal something about the design 
under investigation and can convince us that a new system is more effi cient, effec-
tive, or entertaining than the current state-of-the-art. 

 Third, the described relationship needs to be  testable . You must be able to 
manipulate the levels of one variable (i.e., the independent variable) and accurately 
measure the outcome (i.e., the dependent variable). For example, you could be 
highly infl uenced by “The Truman Show” (Weir,  1998 ) and hypothesize that “we 
are living in a large fi sh tank being watched by other humans with which we can 
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have no contact.” While the statement may or may not be true, it is not testable and 
therefore it is speculation and not a scientifi c hypothesis. 

 Finally, the predicted relationship must be  falsifi able . A common example used 
to demonstrate falsifi ability examines the statement, “Other inhabited planets exist 
in the universe.” This is testable as we could send out space probes and show that 
there are other inhabited planets. However, the lack of detection of inhabited planets 
cannot falsify the statement. You might argue, “what if every single planet is 
observed?”, but it could be that the detection mechanisms we use are simply not 
sensitive enough. Therefore, while this statement could be true, and even shown to 
be true, it is not falsifi able and thus is not an effective scientifi c hypothesis. You 
must be able to disprove the statement with empirical data.  

    Evaluating Your Hypothesis 

 Once you have established a good hypothesis, you need to demonstrate the degree 
to which it holds up under experimental scrutiny. Two common approaches for 
doing this are hypothesis testing and estimation techniques. 

    Hypothesis Testing 

 Hypothesis testing, specifi cally null hypothesis signifi cance testing, is widely used. 
In the context of HCI, this approach often aims to answer the question “Does it 
work?” or “Are the groups different?” 

 The fi rst step in null hypothesis signifi cance testing is to formulate the original 
research hypothesis as a  null hypothesis  and an  alternative hypothesis . 3  The null 
hypothesis (often written as  H  0 ) is set up as a falsifi able statement that predicts no dif-
ference between experimental conditions. Returning to our example from the begin-
ning of the chapter, the null hypothesis would read, “Different frame rates  do not  
affect human perception of fl uid movement.” The alternative hypothesis (often written 
as  H  A  or  H  1 ) captures departures from the null hypothesis. Continuing with the exam-
ple, “different frame rates  do  affect human perception of fl uid movement.” 

 The second step is to decide on a signifi cance level. This is a prespecifi ed value 
that defi nes a tolerance for rejecting the null hypothesis when it is actually true (also 
known as a Type I error). More formally, this is stated as alpha ( α ) and it captures 
the conditional probability, Pr(reject  H  0 | H  0  true). While a somewhat arbitrary choice, 
the convention of  α  = 0.05 is often used as the threshold for a decision. 

 The third step is to collect the data (this is a big step that is addressed later in 
the chapter) and then apply the appropriate statistical test to obtain a  p  value. 

3   Here we present the Neyman–Pearson approach to hypothesis testing as opposed to Fisher’s sig-
nifi cance testing approach. Lehmann ( 1993 ) details the history and distinctions between these two 
common approaches. 
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The  p  value tells you the probability of obtaining the observed data, or more extreme 
data, if the null hypothesis were true. More formally, Pr(observed data| H  0  true). 
Therefore, a low  p  value indicates that the observed results are unlikely if the null 
hypothesis were true. 

 The fi nal step compares the observed  p  value with the previously stated signifi -
cance level. If  p  <  α , then you reject the null hypothesis. Thus, by rejecting the null 
hypothesis that “Different frame rates do not affect human perception of fl uid move-
ment,” we bolster the evidence that different frame rates may affect human percep-
tion of fl uid movement (i.e., we gather additional support for the alternative 
hypothesis). 

 While methodologically straightforward to apply, you should recognize con-
cerns with this methodology, so as not to accidentally misinterpret results. These 
concerns center on its dichotomous “accept” or “reject” outcome, widespread mis-
interpretation and faulty reporting of results, and inattention to the magnitude of 
effects and their practical signifi cance (Cohen,  1994 ; Cumming,  2012 , pp. 8–9; 
Johnson,  1999 ; Kline,  2004 ). Several common misunderstandings stem from a 
misinterpretation of statistical results such as the mistaken belief that a  p  value 
indicates the probability of the result occurring because of sampling error or that 
 p  < .05 means the chances of a Type I error occurring are less than 5 %. Other com-
mon mistakes stem from faulty conclusions drawn after accepting or rejecting the 
null hypothesis such as suggesting that the failure to reject the null hypothesis is 
proof of its validity, or the common misperception that a smaller  p  value means a 
larger effect exists. Finally, researchers should not lose sight of the fact that statisti-
cal signifi cance does not imply substantive signifi cance or practical importance. 
For a detailed description of these and other common mistakes see (Kline,  2013 , 
pp. 95–103).  

    Estimation Techniques 

 While the notion of a null hypothesis can be useful to understand the basic logic of 
the experimental methodology, null hypothesis testing is rarely adequate for what 
we really want to know about the data. To address some of the challenges of tradi-
tional hypothesis testing approaches, contemporary methods rely on  estimation 
techniques  that focus on establishing the magnitude of an effect through the applica-
tion of confi dence intervals and effect sizes (for recent coverage see Cumming, 
 2012 ; Kline,  2013 , pp. 29–65). 4  Accessible and thorough descriptions on various 
estimation techniques can be found in (Cumming,  2012 ; Cumming & Finch,  2001 ; 
Ellis,  2010 ; Kelley & Preacher,  2012 ). Bayesian statistics are another alternative 
that provide greater capability to estimate and compare likelihoods for various 
hypotheses. For introductions to the Bayesian approach see (Kline,  2013 , pp. 289–312; 
Kruschke,  2010 ). 

4   We return to effect sizes and confi dence intervals in the section “What constitutes good work,” 
where we describe how they can be used to better express the magnitude of an effect and its real 
world implications. 
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 Estimation techniques retain the notion of a research hypothesis and accruing 
evidence for or against it, but the emphasis is on quantifying the magnitude of an 
effect or showing how large or small differences are between groups, technologies, 
etc. In the context of HCI, estimation approaches aim to answer more sophisticated 
questions such as, “How well does it work across a range of settings and contexts?” 
or “What is the size and relative importance of the difference between the groups?” 
In other words, it aims to quantify the effectiveness of a given intervention or treatment 
and focuses the analysis on the size of the effect as well as the certainty underlying 
the claim. This approach may be more appropriate for applied disciplines such 
as HCI (Carver,  1993 ) as it shifts the emphasis from statistical signifi cance to the 
size and likelihood of an effect, which are often the quantities we are more inter-
ested in knowing.   

    Variables 

 The choice of the right variables can make or break an experiment and it is one of the 
things that must be carefully tested before running an experiment. This section covers 
four types of variables: independent, dependent, control variables, and covariates. 

    Independent Variable 

 The  independent variable  ( IV ) is manipulated by the researcher, and its conditions 
are the key factor being examined. It is often referred to as  X , and it is the presumed 
cause for changes that occur in the dependent variable, or  Y . 

 When choosing an IV, a number of factors should be taken into account. The fi rst 
is that the researcher can establish  well-controlled variation  in its conditions or 
levels. This can be accomplished by manipulating the stimuli (e.g., the same movie 
recorded at different frame rates), instructions (e.g., posing a task as cooperative vs. 
competitive), or using measured attributes such as individual differences (e.g., 
selecting participants based on gender or education levels 5 ). A group in the condi-
tion that receives the manipulation is known as the treatment group, and this group 
is often compared to a control group that receives no manipulation. 

 The second is the ability to provide a clear  operational defi nition  and confi rm 
that your IV has the intended effect on a participant. You need to clearly state how 
the IV was established so that other researchers could construct the same variable 
and replicate the work. In some cases, this is straightforward as when testing differ-
ent input devices (e.g., trackpad vs. mouse). In other cases it is not. For example, if 

5   When using measures such as education level or test performance, you have to be cautious of 
regression to the mean and be sure that you are not assigning participants to levels of your inde-
pendent variable based on their scores on the dependent variable or something strongly correlated 
with the DV (also known as sampling on the dependent variable) (Galton,  1886 ). 
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you vary exposure to a warning tone, the operational defi nition should describe the 
frequency and intensity of the tone, the duration of the tone, and so on. This can 
become especially tricky when considering more subjective variables capturing 
constructs such as emotional state, trustworthiness, etc. A challenge that must be 
addressed in the operational defi nition is to avoid an  operational confound , which 
occurs when the chosen variable does not match the targeted construct or uninten-
tionally measures or captures something else. 

 A  manipulation check  should be used to ensure that the manipulation had the 
desired infl uence on participants. It is often built into the study or collected at the 
conclusion. For example, if you were trying to experimentally motivate participants 
to contribute to a peer-production site such as OpenStreetMap, 6  a manipulation 
check might assess self-reported motivation at the end of the study in order to vali-
date that your manipulation positively infl uenced motivation levels. Otherwise the 
measured behavior could be due to some other variable. 

 A third important factor to consider is the  range  of the IV (i.e., the difference 
between the highest and lowest values of the variable). Returning to the example of 
motivating OpenStreetMap contributions, the range of values you choose is impor-
tant in determining whether or not motivation levels actually change for your par-
ticipants. If you gave the “unmotivated” group one dollar, and the “motivated” 
group two dollars, the difference may not be enough to elicit a difference in coop-
erative behavior. Perhaps one dollar versus ten dollars may make a difference. It is 
important that the ranges are realistic and practically meaningful. 

 Another critical aspect to variable selection is choosing meaningful or interest-
ing variables for your study. In practice this can be even more diffi cult than address-
ing the aspects described above. Good variables should be theoretically or practically 
interesting; they should help to change our way of thinking; they should aim to 
provide deeper understanding, novel insight, or resolve confl icting views in the lit-
erature. Knowing what others have studied and recognizing the gaps in the prior 
literature can help to achieve this goal.  

    Dependent Variable 

 The  dependent variable  ( DV ), often referred to as  Y , is the outcome measure whose 
value is predicted to vary based upon the levels of the IV. Common types of depen-
dent variables used in HCI research are self-report measures (e.g., satisfaction with 
an interface), behavioral measures (e.g., click-through rates or task completion 
times), and physiological measures (e.g., skin conductance, muscle activity, or eye 
movements). Picking a good DV is crucial to a successful experiment, and a key 
element of a good DV is the extent to which it can accurately and consistently cap-
ture the effect you are interested in measuring. 

  Reliability  is important when choosing a DV. A measure is perfectly reliable if 
you get the same result every time you repeat the measurement under identical 

6   http://www.openstreetmap.org 
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conditions. There are many steps that help to increase the reliability of a DV 7  
and decrease the variability that occurs due to measurement error. For each of your 
DVs, try to:

•     Clearly specify the rules for quantifying your measurement : Similar to the con-
struction of the IV, you need to be able to detail exactly how your DV was con-
structed and recorded. This includes formulating coding and scoring rules for the 
quantifi cation of your measure, or detailing the calculations used when recording 
the value of your DV. If you cannot clearly articulate your rules you will likely 
introduce noise into your measure.  

•    Clearly defi ne the scope and boundaries of what you are going to measure . You 
need to articulate the situations, contexts, and constraints under which you col-
lect your data. For example, suppose you want to measure online content sharing 
by counting how many times in a session people perform link sharing to external 
web content. What counts as “a session?” What counts for “link sharing?” Does 
it have to be original content or can it be a copy of someone else’s post? Does it 
have to be the actual link to a URL or could it be a snippet of content?    

  Validity  is another important consideration when choosing your DV. It is not 
enough to know that a measure is reliable. It is also important to know that a mea-
sure captures the construct it is supposed to measure—if it does so it is considered 
a valid measure. The following lists ways to assess the validity of your measures, in 
order from weakest to strongest 8 :

•     Face validity  is the weakest form of validity. It simply means that your measure 
appears to measure what it is supposed to measure. For example, imagine you 
propose to measure online satisfaction with a web purchasing process by count-
ing the number of positive emoticons that are present in the purchase comments. 
You feel that the more a person uses positive emoticons, the more satisfi ed they 
were, so “on its face” it is a valid measure.  

•    Concurrent validity  uses more than one measure for the same construct and then 
demonstrates a correlation between the two measures at the same point in time. 
The most common way to examine concurrent validity is to compare your DV 
with a gold-standard measure or benchmark. However, concurrent validity can 
suffer from the fact that the secondary variable or benchmark for comparison 
may have the same inaccuracies as the DV under investigation.  

•    Predictive validity  is a validation approach where the DV is shown to accurately 
predict some other conceptually related variable later in time. The prototypical 
example is the use of high-school GPA to predict fi rst year’s GPA in undergradu-
ate classes.  

7   When developing new measures it is important to assess and report their reliability. This can be 
done using a variety of test–retest assessments. 
8   Sara Kiesler and Jonathon Cummings provided this structured way to think about dependent 
variables and assessing forms of reliability and validity. 
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•   Best practice is to make use of  standardized  or  published  measures when 
 available. 9  The major benefi t is that a previously validated and published mea-
sure has been through a rigorous evaluation. However, the challenge in using 
preexisting measures is to make sure that they accurately capture the construct 
you want to measure.    

 The  range  of the DV is another important aspect to consider. A task that is so 
easy that everyone gets everything correct exhibits a “ceiling effect”; while a task 
so diffi cult that nobody gets anything correct exhibits a “fl oor effect.” These effects 
limit the variability of measured outcomes, and as a result the researcher may falsely 
conclude there is no infl uence of the IV on the DV. 

 Related to range is the  sensitivity  of the dependent variable. The measure must 
be sensitive enough to detect differences at an appropriate level of granularity. For 
example, an eye tracker with an accuracy of 2° will not be able to capture a poten-
tially meaningful and consistent difference of ½°. 

 The fi nal thing to consider when selecting a DV is  practicality . Some data are 
more accessible than others and therefore are more viable for a given study. Some 
practical aspects to consider: How often do the events occur? Will the cost of col-
lecting the data be prohibitive? Can you access all of the data? Will your presence 
infl uence the behavior under observation?  

    Control Variable 

 In addition to independent and dependent variables, there are a number of potential 
variables that must remain constant; otherwise you run the risk of fl uctuations in an 
unmeasured variable masking the effect of the independent variable on the dependent 
variable. A  control variable  is a potential IV that is held constant. For example, when 
running reaction time studies you need to control lighting, temperature, and noise 
levels and ensure that they are constant across participants. Holding these variables 
constant is the best way to minimize their effects on the dependent variable. Unlike 
an independent variable, a control variable is not meant to vary but rather stay con-
stant in order to “control” for its infl uence on the DV. For any given experiment there 
are an infi nite number of external variables, so researchers make use of theory, prior 
literature and good discretion to choose which variables to control.  

    Covariate 

 While a good experiment does its best to control for other factors that might infl u-
ence the dependent variable, it is not always possible to do so for all extraneous 

9   It should be noted that numerous surveys and questionnaires published in the HCI literature were 
not validated or did not make use of validated measures. While there is still some benefi t to con-
sistency in measurement, it is less clear in these cases that the measures validly capture the stated 
construct. 
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variables.  Covariates  (or, somewhat confusingly, “control variables” in the 
 regression sense) are additional variables that may infl uence the value of the 
 dependent variable but that are not controlled by the researcher and therefore 
are allowed to naturally vary. These are often participant baseline measures or 
demographic variables for which there is theoretical rationale or prior evidence sug-
gesting a correlation to the dependent variable. The idea is that they need to be 
controlled because random assignment is not perfect, particularly in small samples, 
and therefore experimental groups may not have been completely equivalent before 
the treatment. When this is the case, covariates can be used to control for potential 
confounds and can be included in the analysis as statistical controls.   

    Research Designs 

 Up to this point we have discussed the basic components of experimentation. In this 
section we examine various research designs that bring together these components 
in ways to best accrue evidence for a research hypothesis. While there are several 
texts that provide extensive coverage of experimental designs, we focus on designs 
most commonly used in HCI research. We examine randomized experiments (also 
known as “true experiments”) and quasi-experiments and discuss the differences 
between the two designs. 

    Randomized Experiments 

 We begin by examining a class of experiments known as randomized experiments 
(Fisher,  1925 ). Their distinguishing feature is that participants are  randomly 
assigned  to conditions, as this results in groups that, on average, are similar to one 
another (Shadish, Cook, & Campbell,  2002 , p. 13). In order to keep from confl ating 
attributes of the participants with the variables under investigation, randomized, 
unbiased assignment of participants to the various experimental conditions is 
required for all of these study designs. This can often be done through a coin toss, 
use of a table of random numbers, or a random number generator. 10  

 We begin by describing single-factor designs that allow us to answer questions 
about the relationship between a single IV and a single DV. We then move on to 
examine more advanced designs for multiple IVs and a single DV (known as  facto-
rial designs ) as well briefl y discuss those designs involving multiple IVs and mul-
tiple DVs. 

10   Lazar and colleagues (Lazar, Feng, & Hochheiser,  2010 , pp. 28–30) provide a step-by-step dis-
cussion of how to use a random number table to assign participants to conditions in various experi-
mental designs. In addition, numerous online resources exist to generate tables for random 
assignment to experimental conditions (e.g.,  http://www.graphpad.com/quickcalcs/randomize1.cfm ). 
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   Between-Subjects Design 

 The  between-subjects design  is one of the most commonly used experimental 
designs and is considered by many to be the “gold standard” of randomized experi-
mental research. Participants are randomly assigned to a single condition (also 
known as a level of the IV). 

 Consider, as an example, a rather simple research question that aims to assess the 
effect that  display size has on task immersion . Your independent variable is display 
size, and it has three conditions: small, medium, and large. You also have a single 
dependent variable: a behavioral measure of task immersion. Let us also assume that 
you have 24 participants enrolled in the study. In a between-subjects design, you 
would assign eight participants to the small display size condition, eight to the medium 
display size condition, and the remaining eight to the large display size condition. 

 Most of the benefi ts of a between-subjects design derive from the fact that each 
participant is only exposed to a single condition. As a result, there is no concern that 
the participant will learn something from their exposure to one condition that will 
infl uence measurement of another condition. This is particularly useful for scenar-
ios where the participant may learn or develop competencies that could affect their 
performance in another condition. 

 If fatigue is likely to be an issue, between-subjects designs have the advantage of 
shorter duration because the subjects are only exposed to a single experimental 
condition. Between-subjects designs also afford lengthier experimental tasks for the 
same reason. 

 However, there are also a number of drawbacks to the between-subjects design. 
The biggest disadvantage occurs when there are large individual differences in per-
formance as measured by the DV. This can translate into a failure to detect a differ-
ence when there is one (i.e., a Type II error) because the higher individual variance 
makes it diffi cult (relatively speaking) to achieve a statistically signifi cant result. 
Figure  1  demonstrates this difference. Looking at the data in the left-hand panel 
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  Fig. 1    Example demonstrating the ability to more easily detect differences with within-subjects 
design ( right ) as compared to a between-subjects design ( left ) when there are large individual 
 differences in participants’ scores       
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from 24 different individuals (eight in each of the conditions) you would be hard 
pressed to suggest there is a difference in performance across the groups. However, 
consider the same spread of data drawn from eight individuals who participated in 
each condition as shown in the right-hand panel (this is a within-subjects design 
and is discussed in the next section). In this fi gure each individual’s data points are 
connected by a line and it is easy to see that in all cases the score increases, even 
though there is a great deal of variability across participants in their baseline levels 
of task immersion.

   Another disadvantage is that the groups of participants assigned to the various 
conditions may not be equivalent and may systematically vary along an unseen 
dimension—and this is why random assignment is a crucial requirement of all true 
experiments. In addition, there are a number of practical challenges with between- 
subjects designs such as the need for a larger number of participants to examine an 
equivalent number of experimental conditions.  

   Within-Subjects Design 

 A within-subjects design is one in which participants are assigned to all conditions 
(i.e., all levels of the IV) or have repeated exposure to a single condition (known as 
a repeated measures design). Returning to our research question regarding display 
size and task immersion, each of the 24 participants would be exposed to the small, 
medium, and large display sizes. 

 The main advantage of within-subjects designs stems from the fact that the same 
participant is examined under numerous conditions, which effectively allows them 
to serve as their own control. When there is a large amount of individual variation, 
a within-subjects design is a more sensitive design for capturing differences across 
conditions because you can look at differences within a person experiencing the 
conditions. If everyone, independent of level of performance, is better on one than 
the other, then you can still fi nd signifi cant differences. The general rule of thumb is 
that when there are large individual differences with respect to the dependent vari-
able, a within-subjects design will be more effective. 

 Within-subjects designs can also be highly effi cient. The number of participants 
required to show a signifi cant difference among experimental conditions is reduced 
compared to a between-subjects design. For example, if you have three conditions, 
you would need three times the number of participants in a between-subjects design 
as you would in a within-subjects design. In factorial designs, which we discuss 
later, the multiplier can be even greater. This effi ciency can be particularly helpful 
when studying populations that are high-risk, rare (e.g., participants with rare dis-
abilities or in an isolated locale) or diffi cult to recruit in large numbers or for long 
periods of time (e.g., celebrities, high-level executives, and medical surgeons). 

 The major disadvantage to within-subjects design is that once participants are 
exposed to a condition they may be altered in a way that will impact their behavior 
in other conditions. For example, if a participant learns something in the fi rst expo-
sure that infl uences their performance, there is no way to have them “unlearn” what 
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was just gained. This is particularly problematic with studies that involve learning or 
insight solutions where you suddenly understand something that was previously per-
plexing. More generally, these problems are known as  order effects , since the results 
may be infl uenced by the order in which participants go through the conditions. 

 Another challenge for within-subjects designs has to do with fatigue. For tasks 
that are physically or cognitively challenging, having the subject perform several 
repeated tasks is not an ideal solution. If participants become tired, the data can be 
infl uenced by the fatigue. Spreading the testing out over time (e.g., hours or days) 
can resolve the fatigue issue but can introduce unwanted extraneous infl uences, not 
to mention the practical issues of researcher time and scheduling. 

 Learning and fatigue are issues that often come up in HCI research. For example, 
consider a study examining information retrieval in two different websites. If the 
participants learn about the basic structure of the website in the fi rst trial, they will 
carry over this knowledge to the same task on the second site. These types of prob-
lems are more generally known as  carryover effects , and there are several ways to 
minimize their impact that are described in the following sections. For a summary 
of factors to consider when choosing between a between-subjects design and a 
within-subjects design, see Table  1 . 

  Counterbalancing . Counterbalancing helps minimize carryover and order effects by 
controlling the presentation order of conditions across participants so that each con-
dition appears in each time period an equal number of times. In our display size 
study this means we would want the small, medium, and large display size condi-
tions to appear in each presentation position an equal number of times. 

  Complete counterbalancing  requires that the participants are balanced across all 
possible treatment orders. In a simple experiment with few conditions, this is rela-
tively easy. Table  2  shows our three-level experiment with its six possible orderings. 
However, as the number of conditions increases, the potential orderings grow at a 
rate of  n !, where  n  is the number of conditions.

    Since complete counterbalancing is only feasible for small numbers of condi-
tions—with only fi ve conditions there are 120 different orderings needed—
researchers have developed a compromise approach where each treatment occurs 
equally often in each position.  Latin square designs  11  (Cochran & Cox,  1957 ; 

11   There are numerous online resources for obtaining Latin square tables (e.g.,  http://statpages.org/
latinsq.html ). 

   Table 1    Summary table for choosing a between-subjects design or a within-subjects design   

 Choose… 

 Between-subjects design  Within-subjects design 

 • When there are small individual 
differences, but large expected 
differences across conditions 

 • When there are large individual differences 
(i.e., high variance across participants with 
respect to the dependent variable(s) of interest) 

 • When learning and carryover effects 
are likely to infl uence performance 

 • When tasks are unlikely to be affected by learning 
and carryover effects are unlikely to occur 

 • When fatigue may be an issue  • When working with rare or hard to reach 
populations 
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Fisher & Yates,  1953 ; Kirk,  1982 ; Rosenthal & Rosnow,  2008 , pp. 192–193) are a 
form of  partial counterbalancing  that ensure that each condition appears in each 
position an equal number of times. Table 3 presents a simple Latin square for four 
conditions. 

 A common question that arises regarding Latin square designs is what to do 
with the next cluster of participants. One option would be to continue to use the 
same Latin square over and over again for each new cluster of participants (e.g., 
1–4, 5–8, 9–12, and so on). If using this approach, be sure to test whether the partial 
counterbalancing is systematically related to the effects of the conditions. An alter-
native is to generate new Latin squares for each additional cluster of participants. 
This has the advantage of reducing the likelihood that the partial counterbalancing 
correlates with the results, but the disadvantage is that this correlation cannot be 
tested in a straightforward way (for details on these approaches see Kirk,  2013 , 
Chaps. 14–16). 

 Even better than standard Latin square designs are  balanced Latin square 
designs  where each condition precedes and follows each other condition equally 
often. This can help to minimize sequential effects. 12  For example, in Table  3  notice 
that A precedes B in three of the four rows. A better design can be seen in Table  4  
where A precedes B an equal number of times as B precedes A. A balanced Latin 
square (Bradley,  1958 ; Williams,  1949 ) can be constructed for an even number of 
conditions using the following algorithm for the fi rst row of the square: 1, 2,  n , 3, 

12   This approach only balances for what are known as fi rst-order sequential effects. There are still 
a number of ways in which repeated measurement can be systematically affected such as nonlinear 
or asymmetric transfer effects. See (Kirk,  2013 , Chap. 14) or other literature on Latin square or 
combinatorial designs for more details. 

   Table 2    Complete counterbalancing for a 3-level IV (A,B,C), within-subjects experiment   

 Participant  First treatment  Second treatment  Third treatment 

 1  A (small display)  B (medium display)  C (large display) 
 2  A  C  B 
 3  B  A  C 
 4  B  C  A 
 5  C  A  B 
 6  C  B  A 

   Table 3    A Latin square design for a 4-level IV (A,B,C,D), within-subjects experiment   

 Participant  First treatment  Second treatment  Third treatment  Fourth treatment 

 1  A  B  C  D 
 2  B  C  D  A 
 3  C  D  A  B 
 4  D  A  B  C 
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 n −1, 4,  n −2, …, where  n  = the number of conditions. Each subsequent row is 
 constructed by adding 1 to the value of the preceding row (or subtracting 1 if the 
value is equal to  n ). 13 

       Factorial Designs 

 Up to this point we have focused on experiments that examine a single independent 
variable at a time. However, in many studies you will want to observe multiple inde-
pendent variables at the same time, such as gender, display size and task complexity. 
In such a design each variable is called a  factor , and the designs that make use of 
many factors are  factorial designs . 14  Factorial designs can be either between- 
subjects, within-subjects, or both in what is known as  mixed factorial designs  15  (or 
split-plot designs). 

 The number of factors and their conditions can be multiplied to yield the total 
number of conditions you will have for a given experiment. A study with two fac-
tors, each with two conditions would yield four total conditions. The name for such 
a design would be a 2 × 2 factorial. There is no theoretical limit to the number of 
factors that can be included in a study; however, there are practical limitations since 
each additional factor can drastically increase the number of participants needed 
and the analysis and interpretation become correspondingly complex. For example, 
a 3 × 3 × 4 × 2 design would yield 72 different confi gurations that would each require 
enough participants to have a well-powered experiment. If you were using a 
between-subjects design and including 10 participants in each condition, you would 
need 720 participants! If you used a mixed factorial or within-subjects design you 
could reduce the overall number of participants needed, but you would have to be 
careful about fatigue, ordering and carryover effects. 

13   If your experiment has an odd number of conditions, then two balanced Latin squares are needed. 
The fi rst square is generated using the same method described in the text, and the second square is 
a reversal of the fi rst square. 
14   As a side note, Latin square designs are a within-subject version of a general class of designs 
known as fractional factorial designs. Fractional factorial designs are useful when you want to 
explore numerous factors at once but do not have the capacity to run hundreds or thousands of 
participants to cover the complete factorial (see Collins, Dziak, & Li,  2009 ). 
15   In practice, mixed factorial designs are often used when examining different groups of partici-
pants (e.g., demographics, skills). For example, if you are interested in differences in user experi-
ence across three different age groups, a between-subjects factor may be age group (teen, adult, 
elderly), while a within-subjects factor may be three different interaction styles. 

   Table 4    A balanced Latin square design for a 4-level IV (A,B,C,D), within-subjects experiment   

 Participant  First treatment  Second treatment  Third treatment  Fourth treatment 

 1  A  B  D  C 
 2  B  C  A  D 
 3  C  D  B  A 
 4  D  A  C  B 
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  Main effects and interactions . A major strength of factorial designs is that they 
allow you to build up a more complex understanding of the simultaneous relation-
ship between several independent variables and the dependent variable. In other 
words, you can examine both  main effects  and  interactions . A main effect is the 
infl uence of a single independent variable upon the dependent variable. An interac-
tion occurs when the effect of one independent variable on the dependent variable 
varies according to the levels of another independent variable. 

 Figure  2  illustrates a subset of the possible outcomes for a 2 × 2 factorial design 
that examines test performance for two different groups—low socioeconomic status 
(SES) and high SES—using one of two different online testing systems (one with an 
automated tutor and one without). For this design there are two potential main 
effects: SES and online testing system. There is also an SES × online testing system 
interaction.

   Figure  2a  shows what a graph might look like with a main effect of SES where 
high SES scores higher than low SES (i.e., the red line is higher than the blue line) 
and a main effect of online testing system where the automated tutor scores higher 
than the no tutor system (i.e., the average of the two points on the left is lower than 
the average of the two points on the right). 

  Fig. 2    Three sample outcomes from a 2 × 2 factorial design showing ( a ) two main effects, no 
interaction, ( b ) no main effects but a crossover interaction, ( c ) two main effects and an interaction 
(Color fi gure online)       
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 Figure  2b  exemplifi es another possibility and shows why investigating 
 interactions 16  can be helpful. If you only examined the main effects (by averaging 
across levels of the second IV) you would come to the conclusion that there is no 
difference between the groups or systems tested. However, there is a clear interac-
tion. This form of interaction, known as a crossover interaction, shows that the effect 
on the dependent variable goes in opposite directions for the levels of the variable 
under investigation—and it can mask differences at the main effect level. 17  

 Figure  2c  shows a result that suggests that both the online tutoring system and 
SES may matter. However, there is an SES × online testing system interaction that 
reveals the automated tutoring system primarily benefi ts the low SES group.  

   Determining Sample Size and Statistical Power 

 When designing an experimental study it is important to plan for the number of 
participants needed. The use of too many participants can be a waste of time and 
money, and it runs the risk of uncovering small or even meaningless differences. 
Too few participants, and you may fail to detect differences that actually exist. 
Ideally you want an estimate that will allow you to reach a conclusion that is accu-
rate with suffi cient confi dence. 

 A systematic approach to determining sample size depends on the particular 
experimental design, number of conditions, desired level of statistical confi dence 
( p  < .05 is often used), desired sensitivity or power to detect differences (80 % power 
is often used), a good estimate of the variability in the measurements, and an under-
standing of what a meaningful difference is in the context of your experiment. 

 Bausell and Li ( 2002 ) and Cohen ( 1988 ) provide excellent coverage of the topic, 
and    Kenny (1987, Chap. 13) provides a nice example for studies with a small num-
ber of experimental conditions. There are also numerous web resources for deter-
mining appropriate sample sizes such as   http://www.statsoft.com/textbook/
power-analysis/    . Most statistical software packages also provide tools to generate 
visual representations called power curves that can be particularly useful when you 
are less confi dent of your measurement estimates.   

    Quasi-Experimental Designs 

 In HCI research true random assignment may be impractical, infeasible, or unethi-
cal. For example, consider a study that compares performance in a classroom with 
a new technological innovation versus a traditional classroom without it. In this 
case, the students are not randomly assigned but instead are preselected based on the 
classroom to which they were previously assigned. When this is the case, there is a 

16   Note that common transformations of the data (e.g., logarithmic or reciprocal transformations) 
can affect the detection and interpretation of interactions. Such transformations are performed 
when the data deviate from the distributional requirements of statistical tests, and researchers need 
to be cautious when interpreting the results of transformed data. 
17   For factorial designs with more factors, higher-order interactions can mask lower-order effects. 
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risk that other factors may come into play when measuring the dependent variable. 
For instance, the teacher of the technological innovation class may also be a better 
teacher and that may be the primary reason for a performance enhancement. 

 Quasi-experimental designs 18  aim to address the internal validity threats that 
come about from a lack of randomization. The designs tend to vary along two pri-
mary dimensions: those with or without control or comparison groups; and those 
with or without pre- and post-intervention measures. 

   Non-equivalent Groups Design 

 The non-equivalent groups design is one of the most commonly applied quasi- 
experimental designs in HCI. The goal is to measure changes in performance that 
result from some intervention. However, this design lacks the random assignment of 
participants to experimental groups. This is why it is called “non-equivalent” 
groups—because the two groups are not equivalent in a way that they would be if 
random assignment had been used. In many ways it is structured like a typical pre-
test/post-test design with a control or comparison group: 

  Group A :  Obs   1  –[Intervention]–  Obs   2   
  Control Group :  Obs   1    Obs   2   

 The ideal outcome from such a design is that there is little difference in the pre- 
intervention measure (pre-test) but large differences in the post-test measure. In 
other words, the more likely that the groups are equivalent at pre-test time (Obs 1 ), 
the more confi dence we can have in the differences that appear post intervention 
(Obs 2 ). However, there are still a number of threats to internal validity. One is that 
there are latent attributes of Group A that are not revealed in the pre-testing but that 
interact with the intervention in some way. Another is that the groups are receiving 
uneven exposure over time between the pre-test and post-test. Returning to the 
classroom example, if the teacher in the classroom with the technological innova-
tion also exposes students to something else related to the dependent variable, then 
we run the risk of misattributing the changes in the dependent variable.  

   Interrupted Time-Series Design 

 The interrupted time-series is another popular quasi-experimental design. 19  It infers 
the effects of an independent variable by comparing multiple measures obtained 

18   For more detailed coverage of quasi-experimental designs see (Cook & Campbell,  1979 ; Shadish 
et al.,  2002 ). 
19   Time-series approaches have particular statistical concerns that must be addressed when analyz-
ing the data. In particular, they often produce data points that exhibit various forms of autocorrela-
tion, whereas many statistical analyses require that the data points are independent. There are 
numerous books and manuscripts on the proper treatment of time-series data, many of which reside 
in the domain of econometrics (Gujarati,  1995 , pp. 707–754; Kennedy,  1998 , pp. 263–287). 
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before and after an intervention takes place. It is often used when there is a naturally 
occurring event that takes place or in fi eld studies where it is infeasible to have a 
control group. 

 The basic form of an interrupted time-series design relies on a series of measure-
ments with knowledge of when an intervention, treatment or event occurred, fol-
lowed by another series of measurements: 

  Group A :   Obs   1  – Obs   2  – Obs   3  –[Intervention]– Obs   4  – Obs   5  – Obs   6   

 If the intervening event or treatment had an effect, then the subsequent series of 
observed values should experience a quantifi able discontinuity from the preceding 
measurements. While the easiest change to see is an immediate shift from a fl at line, 
there are numerous ways in which the changes can manifest including intercept or 
slope changes. 20  

 However, there are some major threats to internal validity that must be assessed 
with time-series designs in HCI. The primary concern hinges on whether another 
infl uential event took place at the same time as the intervention (e.g., a major press 
release about your online news system broke at the same time you implemented a 
new algorithm aiming to improve online contributions), or whether there was sig-
nifi cant mortality or drop out that occurred between the fi rst set of measures and the 
second (e.g., the participants that were not contributing much dropped out com-
pletely for the later stages of the study).  

   Strengthening Causal Inferences from Quasi-Experimental Designs 

 For both non-equivalent groups and interrupted time-series designs, there are a 
number of concerns that arise regarding internal validity, most of which result from 
the lack of random assignment or use of a control group. To address these concerns, 
a number of variations have been developed. 

 The fi rst integrates  treatment removal  into the design. 21  If the intervention is 
reversible, then the research design can include this to bolster the causal evidence. 
The fi rst part of the study is the same as the interrupted time-series design, but the 
second half includes a removal of treatment followed by additional measures: 

  Group A :   Obs   1  – Obs   2   [+Intervention]  Obs   3  – Obs   4   [−Intervention]  Obs   5  – Obs   6   

 Naturally, you can extend this design to have  multiple additions and deletions . If 
the dependent variable is sensitive to the intervention you should see it respond to 
each addition and deletion of the treatment, increasing the likelihood that you have 
identifi ed a causal effect. 

20   For a detailed discussion of interrupted time-series designs see (Shadish et al.,  2002 , 
pp. 171–206). 
21   These are also known as A-B-A or withdrawal designs, and are similar to many approaches used 
for small-N or single-subject studies with multiple baselines. For further details see (Shadish et al., 
 2002 , pp. 188–190). 
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 A second variation uses  switching replications  (Shadish et al.,  2002 , pp. 146–147). 
Switching replications make use of more than one group in order to introduce inter-
ventions at different times: 

  Group A :   Obs   1  –[Intervention]– Obs   2  – Obs   3  – Obs   4  – Obs   5  – Obs   6   
  Group B :   Obs   1  – Obs   2  – Obs   3  –[Intervention]– Obs   4  – Obs   5  – Obs   6   
  Group C :   Obs   1  – Obs   2  – Obs   3  – Obs   4  – Obs   5  –[Intervention]– Obs   6   

 If the treatment truly causes a shift in the dependent variable, then you should see 
the shift whenever the intervention takes place (see top panel of Fig.  3 ), whereas if 
the change in the dependent variable was caused by another external factor (e.g., the 
aforementioned press release), then the shift would occur at the same time regard-
less of the timing of the intervention (see bottom panel of Fig.  3 ). Introducing the 
intervention at different times helps to counter internal validity arguments regarding 
the infl uence of simultaneous events, history, or even mortality issues.

   Finally, you can couple the approaches of interrupted time-series and non- 
equivalent control group designs. This design can offer some of the strongest sup-
port for causal inferences: 

  Group A :   Obs   1  –[Intervention]– Obs   2  – Obs   3  – Obs   4  – Obs   5  – Obs   6   
  Group B :   Obs   1  – Obs   2  – Obs   3  –[Intervention]– Obs   4  – Obs   5  – Obs   6   
  Group C :   Obs   1  – Obs   2  – Obs   3  – Obs   4  – Obs   5  –[Intervention]– Obs   6   
  Control Group :   Obs   1  – Obs   2  – Obs   3  – Obs   4  – Obs   5  – Obs   6   
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  Fig. 3    An illustration of the benefi t of time-series with switching replications for detecting or 
minimizing the potential infl uence of exogenous factors. The  top  two fi gures illustrate a disconti-
nuity in the time-series that occurs inline with the intervention, while in the  bottom  two fi gures the 
discontinuity in the data occurs at the same time point regardless of the intervention (i.e., it is more 
likely due to an exogenous infl uence)       
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 In summary, there are several advantages to quasi-experimental designs. One of 
the biggest is that they permit research investigations that may not be possible using 
randomized experimental approaches. For HCI researchers, this often includes 
cases where the investigation best takes place in a naturalistic context. To demon-
strate an effect in its natural environment is a convincing argument regarding its 
real-world signifi cance, and demonstrates that even with all of the external factors 
that may come into play in a natural setting, the effect still has an infl uence. In this 
way, quasi-experimental designs can be particularly well suited to the evaluation of 
contextual social issues, evaluations in educational settings, or for use with hard to 
reach or limited populations as well as in many assistive technology environments. 

 The major disadvantage of quasi-experimental designs is the threat to internal 
validity. In this section we have discussed several ways in which to address validity 
concerns. However, you may not know of the problem until it is too late. Another 
more practical challenge is that these designs, when done properly, often require the 
use of additional participants to serve as controls and comparison groups. If you are 
working with a limited population this can be challenging. Finally, these designs 
can be more complex to implement and also to analyze.    

    Statistical Analysis 

 Just as important as the research design is planning the statistical analysis ahead of 
time in a way that ensures you can draw the appropriate conclusions from your 
experiments. Once the data have been collected, descriptive and inferential statisti-
cal analysis methods are used to assess confi dence in the fi ndings. A detailed treat-
ment of statistics is beyond the scope of this chapter and the reader is instead 
directed to the references at the end of the chapter. 

 Over the years, however, we have found that having a pointer of where to look 
for the right statistical tests is just as important both when designing an experiment 
and when evaluating the results of a study. There are numerous fl ow charts available 
online for choosing the right statistical test for a given experimental design (e.g., 
  http://abacus.bates.edu/~ganderso/biology/resources/stats_fl ow_chart_v2003.pdf    ).   

    What Constitutes Good Work? 

 So what ultimately constitutes good experimental research? As Robert Abelson 
describes in his seminal book, “Statistics as Principled Argument,” it’s M.A.G.I.C. 
Abelson ( 1995 ) suggests that a persuasive argument using experimental results 
relies upon the Magnitude, Articulation, Generality, Interestingness, and Credibility 
of your research. While the MAGIC acronym was originally developed to describe 
data analysis and its presentation, it can also be useful when thinking about what 
constitutes good experimental research. 
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    The MAGIC Criteria 

  Magnitude . The magnitude of your research has to do with understanding the size 
of the effect being reported and whether it is big enough to have “real world” impli-
cations. Assessing magnitude requires more than just obtaining a  statistically sig-
nifi cant  difference between experimental conditions. In fact, as previously 
discussed, a common mistake is to report the  p  value as indicative of an effect’s 
magnitude. The  p  value, critically, depends on two things: the size of the difference 
between the two groups 22  and the size of the sample. Thus, you can achieve a sig-
nifi cant result with a small sample when there is a really big difference between 
your groups; alternatively, you can also achieve a signifi cant result with very small 
differences between the groups, if you have a large enough sample. As a result, a 
better (i.e., smaller)  p  value does not mean it is a “more signifi cant” or “bigger” 
effect. Reporting  p  values will tell you if there is a signifi cant difference between 
the groups under investigation; it will not in and of itself tell you whether the dif-
ference is meaningful. 

 The concept of  effect size  can help to determine whether the difference is mean-
ingful. Effect sizes are used to quantify the size of the mean difference between 
groups (Abelson,  1995 , pp. 45–52; Cohen,  1988 ; Grissom & Kim,  2005 ; Rosenthal 
& Rosnow,  2008 , pp. 55–58). They can be reported either in original units (i.e., the 
raw score) or in standardized forms, the latter of which can also be used when the 
variable’s units do not have an inherent scale or meaning. Effect size is a cleaner 
measure of magnitude and should not be confused with statistical signifi cance. 
Unfortunately, most HCI researchers have not yet embraced the use of effect sizes 
even though it is now mandated in many other scientifi c venues (e.g., American 
Psychological Association,  2010 , p. 34). However, exemplary papers do exist, espe-
cially those performing meta-analyses on topics such as self-disclosure in digital 
environments (Weisband & Kiesler,  1996 ) or examining the infl uence of human- 
like faces in embodied agents on interaction experience (Yee, Bailenson, & 
Rickertsen,  2007 ), as well as individual experimental studies that compare effect 
sizes across conditions (Gergle et al.,  2013 ). 

 Another way HCI researchers can better express magnitude is to report  confi -
dence intervals  (Cumming & Finch,  2001 ; Smithson,  2003 ). Confi dence intervals 
provide a more intuitive and meaningful description of the mean difference between 
the groups. Instead of providing a single number, they identify the range in which 
the true difference is likely to fall. Confi dence intervals, and their corresponding 
confi dence limits, are an intuitive way of specifying not just an estimate of the dif-
ference but also the likely minimum and maximum values of the difference. A good 
example drawn from a fi eld experiment can be seen in Oulasvirta and colleagues’ 
research (Oulasvirta, Tamminen, Roto, & Kuorelahti,  2005 ). 

 Finally, there is a more practical side to magnitude that is determined by the 
choice of experimental design and manipulations. Consider a study that shows a 

22   We use a two-condition example for ease of exposition. 
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large effect with a rather subtle manipulation vs. one that shows a large effect with 
an extreme manipulation. For example, demonstrating an increase in contributions 
to an online peer-production system by providing a graphical badge on a person’s 
profi le page (subtle) vs. paying them $100 to contribute more content (not-so- 
subtle). To the extent that you can produce the same size effects with the former, 
your results have greater magnitude, and oftentimes, practical importance. 

  Articulation . Articulation refers to the degree of detail that is reported about the 
research fi ndings. Consider the following three descriptions which range from least 
to most detailed in discussing the results of a 3 (Input Style) × 2 (Gender) factorial 
experiment: (a) “there was a signifi cant performance difference between the three 
UI input styles”; (b) “There was a signifi cant performance difference between input 
styles and also a signifi cant performance difference by gender”; or (c) “There were 
signifi cant differences between all types of input styles with style 1 being 75 % 
faster than style 2, which in turn was 18 % faster than style 3. Moreover, these per-
formance differences across input styles were even stronger for females than for 
males, and females overall were 7.2 % faster than males.” While the various state-
ments are reporting the same general trend in fi ndings, the last statement does so 
with much greater articulation. For a discussion of ways to enhance reporting of 
results with respect to articulation see Abelson ( 1995 , pp. 104–131). 

  Generality . Generality represents the extent to which the research results apply out-
side the context of the specifi c study. One aspect of this is external validity, or the 
degree to which the results can be generalized to other situations, people, or times. 

 The sample and the population from which it is drawn often limits generality. For 
example, if you are only studying Facebook users, you cannot make claims that 
generalize to the entire world’s population—especially given that a signifi cant 
majority of the world does not actually use Facebook in a signifi cant way. You can, 
however, make claims about the smaller population of Facebook users. Similarly, 
US college students, often easily recruited because they are required to serve in 
experiments as part of a course requirement, are not indicative of people in the rest 
of the world in many, many, ways. 

 Another limitation often comes from the choice of experimental and statistical 
controls employed in a study. In HCI, it is often the case that a highly controlled 
laboratory study with participants who have no history together may not be gener-
alizable to the real-world fi eld environment where the environment can be noisy 
and chaotic, people have prior relational histories, motivation can widely vary, etc. 
Using a wider range of contextual variations within studies, and a systematic pro-
gram of replication and extension along with the application of meta-analysis (for 
an introduction to the technique, see Borenstein, Hedges, & Higgins,  2009 ; for HCI 
examples, see McLeod,  1992 ; Weisband & Kiesler,  1996 ; Yee et al.,  2007 ) across 
numerous studies, are ways to broaden the scope of your fi ndings and improve the 
generality of your research. 

  Interestingness . While the fi rst three criteria can be treated in a more objective 
fashion, the last two have more subjective elements. Interestingness has to do with 
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the importance of the research fi ndings, and this can be achieved in various ways. 
Here we focus on three dimensions of interestingness: theoretical, practical, and 
novelty. 23  

 The  theoretical  dimension centers on experimental HCI research that seeks to 
inform. Theoretical contributions often consist of new or refi ned concepts, princi-
ples, models, or laws. For experimental work to be interesting on a theoretical 
dimension, the fi ndings have to change what theorists think. If we consider theory 
as our best encapsulation of why things work as they do, then challenging that 
assumption or refi ning it in order to make our theories more complete or correct is 
a hallmark of good theoretical research. The extent to which the theory must change, 
or the number of theories that are infl uenced by your fi ndings, are two key ways in 
which importance is assessed. 

 There are numerous experimental and quasi-experimental studies that make con-
tributions on the theoretical dimension. For example, work by Zhu and colleagues 
challenges the traditional notion of online leadership, and suggests that it may be a 
more egalitarian construct than previously assumed (Zhu, Kraut, & Kittur,  2012 ; 
see also Keegan & Gergle,  2010 ). Dabbish and colleagues (Dabbish, Kraut, & 
Patton,  2012 ) used an innovative online experiment to reveal the communication 
behaviors and theoretical mechanisms by which commitment to online groups 
occurs. Finally, several classic studies in the domain of Fitts’ Law have advanced 
the theory by demonstrating trajectory-based steering laws (Accot & Zhai,  1997 ; 
Wobbrock et al.,  2008 ). 

 The  practical  dimension centers on experimental HCI research that seeks to 
solve everyday problems and issues. Practical contributions can take the form of the 
development of useful new metaphors, design guidelines or design patterns, new 
products or services, and design checklists or best practices. This type of work may 
take a more pragmatic and sometimes atheoretical approach to design and develop-
ment. In these cases, experimental research techniques often focus on evaluating or 
verifying the utility of a new design or practice. Some excellent examples of this 
approach are provided in Kohavi and colleagues’ work on using web experiments to 
inform design choices (Kohavi, Henne, & Sommerfi eld,  2007 ; Kohavi & 
Longbotham,  2007 ; Kohavi, Longbotham, & Walker,  2010 ). 

 The  novelty  dimension centers on experimental HCI research that seeks to invent. 
This often includes the design, development, and deployment of new systems; new 
infrastructures and architectures; and new tools or interaction techniques. While not 
all novel contributions of this type in the HCI literature require experimental sup-
port, many are accompanied by an experimental demonstration of their utility and 
how well they perform in new settings or relative to existing best practices or state-
of- the-art algorithms or systems. 

23   While we separate these three areas in order to discuss the relative contributions that are made in 
each, it is not to suggest that these are mutually exclusive categories. In fact, some of the most 
infl uential work has all three dimensions. For a more nuanced discussion of the integration of theo-
retical (basic) and practical (applied) research in an innovation context see Stokes ( 1997 )  Pasteur ’ s 
Quadrant . 
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 Gutwin and Penner’s work on telepointer traces (Gutwin & Penner,  2002 ), 
Wigdor and colleagues’ LucidTouch system (Wigdor, Forlines, Baudisch, Barnwell, 
& Shen,  2007 ), or Zhai and Kristensson’s work on the SHARK shorthand gesturing 
system (Kristensson & Zhai,  2004 ; Zhai & Kristensson,  2003 ) all make use of ele-
ments of experimental design 24  to rigorously demonstrate the utility of their novel 
designs and systems. 

  Credibility . Credibility is established by convincing the readers and reviewers that 
your work has been performed competently and with regard to common pitfalls and 
traps—it serves to bolster the plausibility of your claims. Much of what we have 
discussed throughout this chapter is aimed at establishing and supporting the cred-
ibility of your work. Doing things correctly, according to preestablished best prac-
tices and guidelines, is the easiest way to convince others of the credibility of 
experimental research. Dealing with internal and external validity, choosing a sam-
ple and understanding its limits, recognizing potential confounds, reporting on 
large and meaningful effects, performing appropriate analyses and correctly report-
ing and representing your fi ndings are all keys to establishing credible experimen-
tal research.  

    Writing Up Experimental Research 

 In order for experimental HCI research to have an impact, it needs to be communi-
cated to other researchers. While a detailed discussion of writing and dissemination 
is beyond the scope of this chapter—and several excellent guides already exist (e.g., 
Bem,  2003 )—the following provides a brief description of the central elements 
required when reporting experimental research. 

 The general form of an experimental research article follows the hour-glass writ-
ing form. It is broad at the beginning and end, and narrow in the middle. Keep in 
mind that the main goal of your research paper is to motivate and detail your argu-
ment, demonstrate what you did, and convince the reader of your contribution. It is 
not a chronology of everything you did from day one, nor is it a detailed description 
of every single fact you uncovered. It is a pointed argument. The following presents 
a standard structure for an experimental research piece, and we focus on elements 
that we feel are often misreported or problematic in HCI related venues: 

  Introduction . The introduction should answer the question, “What is the problem?” 
and “Why should anyone care?” 25  It should provide an overview of the work and 

24   Not all of these studies are strict randomized experiments. For example, the SHARK evaluation 
does not make use of a control or comparison group. However, many use experimental research 
techniques to effectively demonstrate the feasibility of their approach. 
25   The framing questions in this section are drawn from Judy Olson’s “10 questions that every gradu-
ate student should be able to answer.” The list of questions and related commentary can be found 
here:  http://beki70.wordpress.com/2010/09/30/judy-olsons-10-questions-and-some-commentary/ 
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develop the central argument for the paper. It should identify the problem, provide 
rationale for why it matters and requires further research, describe and situate the 
research in the context of related literature, and end with the specifi c goals of the 
study often stated in the form of hypotheses or research questions. Be sure to state 
the research questions early, and walk the reader through your argument. Use plain 
English. Provide examples. Be concrete. 

  Method . The method section should aim to answer the question, “What did I do?” It 
should begin with a detailed description of who the  participants  were (e.g., age, 
gender, SES, education level, and other relevant demographic variables). It is also 
important to know about the motivations used to achieve participant involvement. 
Was it done for course credit? Were the participants paid? If so, did it depend on 
their performance? etc. 

 The  sampling procedure  should then be discussed. For example, were the partici-
pants drawn from a randomized national sample or perhaps snowball sampling was 
used? Next, the approach used to  assign participants  to experimental conditions 
should be described. Were the participants randomly assigned, was some form of 
paired assignment used, or were preexisting groups used (e.g., classrooms)? 

 The next area to include in the method is a description of the  experimental 
design  and the  experimental conditions . The type of design should be clearly artic-
ulated (e.g., between- or within-subjects, mixed factorial design, or interrupted 
time series). The dependent and independent variables should also be described. 
This should be followed by a description of the  stimuli  and  materials  used to collect 
the data. 

 Finally, the written  procedure  should provide a detailed description of the pro-
cesses used to collect the data. Describe any particular machinery, software, or mea-
surement instruments. Discuss how the participants were handled before, during, 
and after the study, and detail the presentation order of materials. This should be 
followed by a description of the analysis where you detail what statistical compari-
sons were planned, discuss how missing data were treated, state how your depen-
dent variable was captured, scored, annotated, etc. 

 The rule of thumb for the amount of detail that should go into the method section 
is that it should be enough for another researcher to be able to replicate the study if 
they chose to do so. 

  Results . The results section should aim to answer the question, “What did I fi nd?” It 
should present the analyses performed and the major fi ndings. You should present 
the results in a way that best supports the central argument being proposed in the 
paper, and be explicit when addressing central research questions and hypotheses. 

 The results section should focus on the most important fi ndings or DVs. 
Remember, you are presenting results that are relevant to the central argument of the 
paper (both those that support and contradict your argument). Be sure to state each 
fi nding in a clear form without the use of jargon, and then support it with statistics. 
Remember that the statistics are not the focal point of the results section. The state-
ment of the fi nding is the important part, and the statistics should be used to bolster 
the reader’s confi dence in that statement. Show the most relevant fi ndings in tables 

Experimental Research in HCI



220

and fi gures, and be sure to point out the fi gures and tables in the accompanying 
prose. It can also be useful to interpret as you present, although you need to be clear 
about what are actual results and what are interpretations of the results. Finally, end 
the results section with a reminder of the purpose of the experiment and provide a 
light summary of the results with respect to the central argument. 

  Discussion . The discussion section should aim to answer the question, “What does 
all of this mean?” and “Why does it matter?” Remember, this section (and the paper 
as a whole) should be a pointed argument. The discussion section is where you can 
contextualize your results both with respect to the central research questions and 
hypotheses and in relation to prior work in the area. 

 In this section you should start by reviewing the evidence you have garnered 
toward your position and discuss the evidence against it. Be sure not to oversell your 
fi ndings. You should also be sure to discuss the limitations of the current study or 
approach and address possible alternative explanations for your fi ndings. 

 Once you have discussed your results in detail, you can begin to talk about the 
broader implications of the work whether they are for design, policy, or future work. 
You can describe the ways in which new experiments can be performed to address 
open questions or describe new directions that need to be addressed given the fi nd-
ings you have revealed. 

  Conclusion . Finally, you should conclude the paper with a restatement of your 
work. The conclusion is, in many ways, like the introduction of the paper. This is 
often a single paragraph that reminds the reader of the initial goals of the work, what 
you found, what it means, and why it matters—both for the particular questions 
under investigation as well as more broadly.   

    Personal Story about How the Authors Got into this Method 

 In this section we describe our personal experiences with research we conducted 
together with colleagues Randy Pausch and Peter Scupelli exploring the cognitive 
effects of physically large displays. 

 At the time we began our large display work (around 1999), LCD manufacturing 
was becoming signifi cantly more effi cient, creating a supply of cheaper and larger 
displays. Furthermore, projectors and digital whiteboards were becoming com-
monplace in conference rooms, and researchers were exploring the extension of 
these large displays into more traditional offi ce spaces. Although researchers had 
articulated the qualitative benefi ts that large displays had on group work, little 
research had been done to quantify the benefi ts for individual users, which we had 
anecdotally noticed in our various new display setups. We thus set out to compare 
and understand the effects that physical display size (i.e., traditional desktop dis-
plays vs. large wall displays) had on task performance (Tan, Gergle, Scupelli, & 
Pausch,  2006 ). 
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 We began this work armed with theoretical foundations articulated in prior 
research. Quite a bit of work suggested wider fi elds of view offered by larger dis-
plays were benefi cial across a variety of tasks (e.g., Czerwinski, Tan, & Robertson, 
 2002 ). This work pointed not only to pragmatic benefi ts of large displays such as 
ease of viewing, which facilitated better social interaction, but also to an increased 
sense of presence, for example, in virtual environments. However fi eld of view was 
a function of two variables: display size and distance from the user. We set out to 
isolate and understand the effects of physical display size specifi cally. 

 To do this, we had to keep constant the visual angle subtended from the user to 
each of the small and large displays by adjusting the viewing distances appropri-
ately, hence varying only the physical display size. In fact, we considered fastening 
users’ heads in place to prevent movement that may have caused fi eld of view dif-
ferences, but this was uncomfortable and we ran various pilot studies showing that 
small movements of the head did not account for any of the effects seen, so our main 
experiments were run without this constraint. We were careful to hold other displays 
factors such as screen resolution, refresh rate, color, brightness, and contrast con-
stant across the displays so that we could isolate any effects to the display size with 
minimal confounds. 

 In the beginning, we conducted exploratory experiments with a wide variety of 
tasks to uncover areas of interest. We found something interesting—display size did 
not seem to affect reading comprehension tasks (remember, we could not “prove” 
equivalence between the conditions, so this is not a defi nitive statement, but helped 
us focus our efforts elsewhere), but that users performed signifi cantly better on a 
spatial orientation task in which they had to perform imagined rotations of a boat. 
We hypothesized that this was due to the way the images were perceived in each 
display condition and thus the strategy with which users performed the task. In pilot 
studies, we tried using questionnaires as well as structured interviews to determine 
the strategy users employed, but found that users were not able, either implicitly or 
explicitly, to articulate their cognitive strategy. Hence, we designed a series of 
experiments to probe this more deeply. 

 Returning to theoretical foundations suggested two cognitive strategies that 
could have been employed for spatial rotations: an egocentric rotation, in which 
users take a fi rst-person view and imagine rotating their bodies within an environ-
ment, or an exocentric rotation, in which users take a third-person view and imagine 
objects rotating around other objects in space. Evidence in the psychology literature 
suggests that egocentric rotations, where appropriate, are much more effi cient. We 
thus hypothesized that (a) we could bias users into adopting one or the other of the 
strategies by manipulating the instructions; (b) that the egocentric strategy was 
indeed more effi cient than the exocentric one for our task; (c) when no explicit 
strategy was provided, the display size would serve (just as explicit instructions 
may) to implicitly bias the user towards a particular cognitive strategy. We refer the 
reader to (Tan, Gergle, Scupelli, & Pausch,  2003 ) for experimental design and 
results. The experiment supported these hypotheses. 

 Building on this, we then set out to understand if there were specifi c tasks that 
would benefi t more or less from this effect. Namely, we hypothesized that large 
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displays bias users into using egocentric strategies and do not increase performance 
on “intrinsically exocentric” tasks for which egocentric strategies are not useful. 
Hence we selected a set of stimuli and tasks (i.e., the well-validated Card, Cube, and 
Shepard Metzler tasks) that we believed from prior work to be explicitly exocentric 
tasks, and results did not show effects as seen with the fi rst round of tasks. Note that 
this was exactly the test of equivalence that we instruct readers to be cautious with. 
In fact, we did not demonstrate equivalence with this experiment, merely the lack of 
an observed effect, which we carefully treated as converging evidence to an already 
sizable set of evidence collected through the other experiments. 

 Finally, we extended the results from controlled (and contrived) tasks to a set of 
experiments that demonstrated more ecologically valid fi ndings to demonstrate the 
robustness of the effects (Tan, Gergle, Scupelli, & Pausch,  2004 ). We increased the 
complexity of task and spatial abilities used as well as adding user interaction in 
rich dynamic three-dimensional virtual environments. 

 We showed in the fi rst of these experiments that (a) users perform better in men-
tal map formation and memory tasks when using physically large displays due to 
the increased likelihood that they adopt egocentric strategies; (b) users perform bet-
ter in the path integration task when they are interactively moving themselves 
through the virtual environment; (c) the effects induced by physical display size are 
independent of those induced by interactivity. We also then demonstrated in a sepa-
rate experiment that even in an environment crafted with cues such as distinct land-
marks and rich textures to be realistic and memorable (i.e., navigating an 
out-of-the-box Unreal Tournament 2003 world), users perform better in mental map 
formation and memory tasks when using physically large displays due to the 
increased likelihood that they adopt egocentric strategies. More recently, we dem-
onstrated how a theoretical understanding provides strong predictive power when 
we demonstrated how large display infl uences on egocentric and exocentric per-
spectives ultimately manifest in language differences (e.g., in the use of local and 
remote references) in a collaborative task (Bao & Gergle,  2009 ). 

 In this section, and throughout the chapter, we have described and discussed 
many critical concepts that need to be considered when using experimental research 
to answer research questions and reveal causal relations. Through thoughtful devel-
opment of research questions and careful research design, experimental research 
can be a powerful way of knowing and we feel it is an important methodology for 
any HCI researcher’s toolbox.  

    References for Becoming More Expert 
in Experimental Research 

 Throughout the chapter we have provided numerous citations to works that address 
the various issues in more depth. In addition to these citations (which can be used 
as model papers or authoritative sources), there are several exceptional texts that 
merit attention. 
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 David W. Martin has written an excellent book for newcomers (or even 
old- timers who need a refresher) to experimental research, “Doing Psychology 
Experiments” (Martin,  2004 ). While the work is focused on psychology, 
Martin writes in an extremely accessible fashion and focuses on applied questions 
closer to that found in HCI research than many more esoteric theoretical treatments 
of the topic. 

 A seminal and extremely thorough, although more technical, treatment of experi-
mental design can be found in Rosenthal & Rosnow’s “Essentials of Behavioral 
Research: Methods and Data Analysis” (Rosenthal & Rosnow,  2008 ). 

 A central challenge in HCI is how to assess the quality of a new design in a real 
world context outside of the laboratory. When doing so we often lose the ability to 
have the refi ned control that most experimentalists strive to obtain. Education 
researchers have struggled with a similar problem for decades, and there are several 
excellent books and papers on quasi-experiments and ways to achieve the best pos-
sible control in such environments. These approaches are often more balanced 
between internal and external validity, and fi nd ways to accrue evidence toward a 
causal argument without the strict control of the laboratory experiment. An older 
but particularly good treatment on the subject of quasi-experimental design is pro-
vided by Campbell and Stanley (Campbell, Stanley, & Gage,  1963 ), and a more 
recent and comprehensive authoritative guide is provided by Shadish, Cook, and 
Campbell (Shadish et al.,  2002 ). 

    Statistical Analysis 

 For an introduction to statistical analysis, Weiss’ introductory statistics textbook is 
extremely well-written, comprehensive, and detailed with accessible examples 
throughout (Weiss,  2008 ). 

 In addition, an excellent and comprehensive resource for reviewing what should 
be included in research papers when using various statistical techniques from both 
a writer’s and reviewer’s perspective is available in Hancock and Mueller’s ( 2010 ) 
edited volume, “The Reviewer’s Guide to Quantitative Methods in the Social 
Sciences.” It covers everything from ANOVA to factor analysis to hierarchical lin-
ear modeling to inter-rater reliability to structural equation modeling, and beyond, 
in a concise and accessible fashion. 

 There have also been a number of HCI researchers who have focused on experi-
mental methods and statistics directly for HCI researchers. An excellent self-guided 
tutorial can be found in Wobbrock’s statistical analysis techniques for HCI research-
ers (Wobbrock,  2011 ). In this work Wobbrock focuses exclusively on methods and 
approaches that are common for HCI researchers. He also draws out examples of 
common problems and challenges found in HCI research.   
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    Exercise 

     1.    Generate an example of an interaction in a multi-variable experiment.   
   2.    In your own research, what experiment could you run? How many subjects? 

What would they do? What are the materials you’d need? What data would you 
collect?         

  Acknowledgements   We would like to thank Wendy Kellogg, Robert Kraut, Anne Oeldorf-
Hirsch, Gary Olson, Judy Olson, and Lauren Scissors for their thoughtful reviews and comments 
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